早教吧作业答案频道 -->数学-->
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时
题目详情
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中
一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点 ___ (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

(1)点 ___ (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
▼优质解答
答案和解析
(1)点M.
(2)经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,
∴S△AMQ=
AM•PQ=
(4-2t)(1+t)=-t2+t+2.
∴S=-t2+t+2=-t2+t-
+
+2=-(t-
)2+
,
∵0≤t≤2
∴当t=
时,S的值最大.
(3)存在.
设经过t秒时,NB=t,OM=2t
则CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°
①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高
∴PQ是底边MA的中线
∴PQ=AP=
MA
∴1+t=
(4-2t)
∴t=
∴点M的坐标为(1,0)
②若∠QMA=90°,此时QM与QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴点M的坐标为(2,0).

(2)经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,
∴S△AMQ=
1 |
2 |
1 |
2 |
∴S=-t2+t+2=-t2+t-
1 |
4 |
1 |
4 |
1 |
2 |
9 |
4 |
∵0≤t≤2
∴当t=
1 |
2 |
(3)存在.
设经过t秒时,NB=t,OM=2t
则CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°
①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高
∴PQ是底边MA的中线
∴PQ=AP=
1 |
2 |
∴1+t=
1 |
2 |
∴t=
1 |
2 |
∴点M的坐标为(1,0)
②若∠QMA=90°,此时QM与QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴点M的坐标为(2,0).
看了 如图,四边形OABC为直角梯...的网友还看了以下:
已知椭圆y^2/a^2+x^2/b^2=1(a>b>0)的右顶点为A(1,0)过其焦点且垂直长轴的 2020-04-06 …
直角三角形里有条和直角边平行的线,求这条线的长度直角三角形为ABC,其中AB、BC为直角边,直线D 2020-04-26 …
如图所示,一质量为m的小球用两根不可伸长的轻绳a、b连接,两轻绳的另一端竖直杆的A、B两点上,当两 2020-05-13 …
下列说法中正确的是A延长直线MN到点CB直线A与直线B交于点MC三点决定一条直线D无数条直下列说法 2020-05-17 …
已知三边长为a,b,c,如果(a-5)+|b-12|+c-26c+169=0,则△ABC是().A 2020-07-18 …
如图所示,AB垂直BC,DC垂直BC,垂足分别为点B,C{1}当AB=4,DC=1,BC=4时,在 2020-07-24 …
vb编程求救在一个直角三角形中,三条边a、b、c的长度为整数,且一条直角边a的长度已确定,斜边c的 2020-07-30 …
如图所示,相距15厘米的两条平行线a和b之间,有直角三角形A和长方形B.直角三角形A沿着直线a以每 2020-08-01 …
如图所示,为一次洪灾中,德国联邦国防军的直升机在小城洛伊宝根运送砂袋.该直升机A用长度足够长的悬索( 2020-12-09 …
如图为一架直升机运送沙袋.该直升机A用长度足够长的悬索(其重力可忽略)系住一质量m=50kg的沙袋B 2020-12-25 …