早教吧作业答案频道 -->其他-->
(2012•东城区二模)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间
题目详情
(2012•东城区二模)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.
(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;
(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;
(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.

(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;
(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;
(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.

▼优质解答
答案和解析
(1)MN=AM-CN,
理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,O也是等边三角形三个角的平分线交点,
∴∠OCA=∠OAB=∠OCN=
×60°=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠NCO=∠OAN′,
∵在△OCN和△OAN′中
,
∴△OCN≌△OAN′(SAS),
∴ON′=ON,∠CON=∠AON′,
∵∠COA=120°,∠NOM=60°,
∴∠CON+∠COM=60°,
∴∠AON′+∠COM=60°,
即∠NOM=∠N′OM,
∵在△NOM和△N′OM中
,
∴△NOM≌△N′OM,
∴MN=MN′,
∵MN′=AM-AN′=AM-CN,
∴MN=AM-CN.
(2)MN=AM-CN,
证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°-30°-30°=120°,
∴∠OCN=∠OAN′=30°,
∵在△OCN和△OAN′中
,
∴△OCN≌△OAN′(SAS),
∴ON=ON′,∠CON=∠AON′
∴∠N′ON=∠COA=120°,
又∵∠MON=60°,
∴∠MON=∠MON′=60°
∵在△NOM和△N′OM中
理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,O也是等边三角形三个角的平分线交点,
∴∠OCA=∠OAB=∠OCN=
1 |
2 |
∴∠AOC=180°-30°-30°=120°,
∴∠NCO=∠OAN′,
∵在△OCN和△OAN′中
|
∴△OCN≌△OAN′(SAS),
∴ON′=ON,∠CON=∠AON′,

∵∠COA=120°,∠NOM=60°,
∴∠CON+∠COM=60°,
∴∠AON′+∠COM=60°,
即∠NOM=∠N′OM,
∵在△NOM和△N′OM中
|
∴△NOM≌△N′OM,
∴MN=MN′,
∵MN′=AM-AN′=AM-CN,
∴MN=AM-CN.
(2)MN=AM-CN,
证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°-30°-30°=120°,
∴∠OCN=∠OAN′=30°,
∵在△OCN和△OAN′中
|
∴△OCN≌△OAN′(SAS),
∴ON=ON′,∠CON=∠AON′
∴∠N′ON=∠COA=120°,
又∵∠MON=60°,
∴∠MON=∠MON′=60°
∵在△NOM和△N′OM中
作业帮用户
2017-09-26
|
看了 (2012•东城区二模)已知...的网友还看了以下:
直线AB过点A(m,0)、B(0,n)(m>0,n>0),反比例函数y=m/x的图像与AB交于C、 2020-04-08 …
已知集合M={0,a},N={x∣x^2-2x-3 2020-05-13 …
a为晨昏线,b为纬线,m点为a线的纬度最北点,mn在同一经线上,且纬度差为90°,此时北京为国庆节 2020-05-14 …
已知集合M=〔0,a〕,N=〔0,15〕,如果M真包含于N,求实数a所在区间 2020-05-16 …
有一个长24厘米、宽8厘米的长方形ABCD,M点在AD边上以每秒2厘米的速度沿AD从A向D点移动; 2020-06-03 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
设直线方程时,如果已知直线过x轴上(a,0)的一个定点就要设成y=k(x-a),如果是过y轴上的一 2020-06-17 …
如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平,a、b是两个完全相同的带正电 2020-07-21 …
如图所示,Oxyz坐标系的y轴竖直向上,坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x轴平行。 2020-11-01 …
在直角坐标系中,如果a是正数,b是负数,则点(0,a),(b,0)分别在什么位置上?但是点(0,a) 2021-02-04 …