早教吧作业答案频道 -->其他-->
(2012•东城区二模)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间
题目详情
(2012•东城区二模)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.
(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;
(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;
(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.

(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;
(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;
(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.

▼优质解答
答案和解析
(1)MN=AM-CN,
理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,O也是等边三角形三个角的平分线交点,
∴∠OCA=∠OAB=∠OCN=
×60°=30°,
∴∠AOC=180°-30°-30°=120°,
∴∠NCO=∠OAN′,
∵在△OCN和△OAN′中
,
∴△OCN≌△OAN′(SAS),
∴ON′=ON,∠CON=∠AON′,
∵∠COA=120°,∠NOM=60°,
∴∠CON+∠COM=60°,
∴∠AON′+∠COM=60°,
即∠NOM=∠N′OM,
∵在△NOM和△N′OM中
,
∴△NOM≌△N′OM,
∴MN=MN′,
∵MN′=AM-AN′=AM-CN,
∴MN=AM-CN.
(2)MN=AM-CN,
证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°-30°-30°=120°,
∴∠OCN=∠OAN′=30°,
∵在△OCN和△OAN′中
,
∴△OCN≌△OAN′(SAS),
∴ON=ON′,∠CON=∠AON′
∴∠N′ON=∠COA=120°,
又∵∠MON=60°,
∴∠MON=∠MON′=60°
∵在△NOM和△N′OM中
理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,O也是等边三角形三个角的平分线交点,
∴∠OCA=∠OAB=∠OCN=
| 1 |
| 2 |
∴∠AOC=180°-30°-30°=120°,
∴∠NCO=∠OAN′,
∵在△OCN和△OAN′中
|
∴△OCN≌△OAN′(SAS),
∴ON′=ON,∠CON=∠AON′,

∵∠COA=120°,∠NOM=60°,
∴∠CON+∠COM=60°,
∴∠AON′+∠COM=60°,
即∠NOM=∠N′OM,
∵在△NOM和△N′OM中
|
∴△NOM≌△N′OM,
∴MN=MN′,
∵MN′=AM-AN′=AM-CN,
∴MN=AM-CN.
(2)MN=AM-CN,
证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,
∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,
∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°-30°-30°=120°,
∴∠OCN=∠OAN′=30°,
∵在△OCN和△OAN′中
|
∴△OCN≌△OAN′(SAS),
∴ON=ON′,∠CON=∠AON′
∴∠N′ON=∠COA=120°,
又∵∠MON=60°,
∴∠MON=∠MON′=60°
∵在△NOM和△N′OM中
作业帮用户
2017-09-26
|
看了 (2012•东城区二模)已知...的网友还看了以下:
设一动直线L与曲线C:(x-1)²+(y-1)²=1相切,此直线和x轴、y轴的交点分别为A、B,且O 2020-03-31 …
第五套人民币1999年版纸币采用的安全线是_______。A.磁性缩微文字安全线B.间断式安全线C. 2020-05-27 …
第五套人民币1990年版纸币采用的安全线是________A.磁性缩微文字安全线B.间断式安全线C. 2020-05-27 …
按基本等高距绘出的等高线称为()。A.计曲线;B.间曲线;C.首曲线;D.助曲线。 2020-05-27 …
肌节是A:位于M线与Z线之间B:1个I带+1个A带C:位于相邻两条Z线之间D:位于相邻两条M线之间E 2020-06-07 …
如图中a﹑b﹑c﹑d是星形连接的三相交流电源在照明电路中的输电导线,用电压表测得a、b间的电压为2 2020-07-21 …
画图几何与建筑制图作业1.在楼层结构平面图中,不可见的墙、柱、梁的轮廓线用()线型绘制.A中实线B 2020-08-01 …
在平面几何的学习过程中,我们经常会研究角和线之间的关系.(1)如图①,直线a、b被直线c所截,交点 2020-08-02 …
如图,直线a∥b,点A为直线a上的动点,点B为直线a,b之间的定点,点C为直线b上的定点.(1)当∠ 2020-11-03 …
1.A,B两配电站间的输电线发生了短路,为查出短路发生处,分别测出A站两导线间的电阻为5欧,B站两导 2020-12-18 …
扫描下载二维码