早教吧作业答案频道 -->其他-->
以下四个命题:①已知A、B为两个定点,若|PA|+|PB|=k(k为常数),则动点P的轨迹为椭圆.②双曲线x225−y29=1与椭圆x235+y2=1有相同的焦点.③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的
题目详情
以下四个命题:
①已知A、B为两个定点,若|PA|+|PB|=k(k为常数),则动点P的轨迹为椭圆.
②双曲线
−
=1与椭圆
+y2=1有相同的焦点.
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率.
④过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
=
(
+
),则动点P的轨迹为椭圆;
其中真命题的序号为______.
①已知A、B为两个定点,若|PA|+|PB|=k(k为常数),则动点P的轨迹为椭圆.
②双曲线
| x2 |
| 25 |
| y2 |
| 9 |
| x2 |
| 35 |
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率.
④过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
| OP |
| 1 |
| 2 |
| OA |
| OB |
其中真命题的序号为______.
▼优质解答
答案和解析
①根据椭圆的定义,当K≤|AB|时,动点P的轨迹不是椭圆,∴①错误;
②双曲线与椭圆的焦点坐标都是(±
,0),∴②正确;
③方程2x2-5x+2=0的两根可分别2和
,∴③正确;
④根据向量加法的平行四边形法则P为AB的中点,在单位圆x2+y2=1,设P(x,y),A(-1,0),B(x1,y1)
x1=2x+1,y1=2y代入圆的方程得(2x+1)2+(2y)2=1,轨迹是圆,∴④错误.
故答案是②③
②双曲线与椭圆的焦点坐标都是(±
| 34 |
③方程2x2-5x+2=0的两根可分别2和
| 1 |
| 2 |
④根据向量加法的平行四边形法则P为AB的中点,在单位圆x2+y2=1,设P(x,y),A(-1,0),B(x1,y1)
x1=2x+1,y1=2y代入圆的方程得(2x+1)2+(2y)2=1,轨迹是圆,∴④错误.
故答案是②③
看了 以下四个命题:①已知A、B为...的网友还看了以下:
(1)已知椭圆C x^2/2+y^2=1 的右焦点为F .O为坐标原点 (1)求过点O,F并且与直 2020-05-13 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
(2X+Y)^2-7(2X+Y)-18(X^2-5X)^2-2(X^2-5X)-24还有(X^2- 2020-06-02 …
f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x(1)h(x)=f'(x)/x为 2020-06-03 …
(1)x+x/2=3,解得x=2;(2)x/2+x/3=5,解得x=6;(3)x/3+x/4=7, 2020-06-07 …
已知多项式3x^3+ax^2+bx+1能被x^2+1且商式是3x+1,求(-a)^b的值急,还有一 2020-07-30 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
1、已知x+y+z=0求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+62、x- 2020-10-31 …
1.已知x=7/2(√7+√5).y=1/2(√7-√5)求下列各式值.(1)x^2-xy+y^2( 2020-11-01 …
当M为参数时,集合A={(x,y)|x^2+y^2+x-6*y+m=0}是以(-1/2,3)为圆心的 2020-12-27 …