早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q.若点P与A、B两点不重合,

题目详情
如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
作业帮
(1)求证:AC=AD+CE;  
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q.若点P与A、B两点不重合,求
DP
PQ
的值.
▼优质解答
答案和解析
(1)∵BD⊥BE,
∴∠1+∠2=180°-90°=90°,
∵∠C=90°,
∴∠2+∠E=180°-90°=90°,
∴∠1=∠E,
∵在△ABD和△CEB中,
∠1=∠E
∠A=∠C=90°
AD=BC

∴△ABD≌△CEB(AAS),
∴AB=CE,
∴AC=AB+BC=AD+CE;
(2)如图,过点Q作QF⊥BC于F,
作业帮
则△BFQ∽△BCE,
BF
BC
=
QF
CE

BF
3
=
QF
5

∴QF=
5
3
BF,
∵DP⊥PQ,
∴∠APD+∠FPQ=180°-90°=90°,
∵∠APD+∠ADP=180°-90°=90°,
∴∠ADP=∠FPQ,
又∵∠A=∠PFQ=90°,
∴△ADP∽△FPQ,
AD
PF
=
AP
QF

3
5-AP+BF
=
AP
QF

∴5AP-AP2+AP•BF=3•
5
3
BF,
整理得,(AP-BF)(AP-5)=0,
∵点P与A,B两点不重合,
∴AP≠5,
∴AP=BF,
由△ADP∽△FPQ得,
DP
PQ
=
AP
QF

DP
PQ
=
3
5