早教吧作业答案频道 -->数学-->
(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.(1)已知平面β内有一点P′(2,2),则点P′在平面α内的射影
题目详情
(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°. (1)已知平面β内有一点P′(2 ![]() (2)已知平面β内的曲线C′的方程是(x′﹣ ![]() ![]() |
(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.
(1)已知平面β内有一点P′(2
,2),则点P′在平面α内的射影P的坐标为 _________ ;
(2)已知平面β内的曲线C′的方程是(x′﹣
) 2 +2y 2 ﹣2=0,则曲线C′在平面α内的射影C的方程是 _________ .
(1)已知平面β内有一点P′(2

(2)已知平面β内的曲线C′的方程是(x′﹣


(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.
(1)已知平面β内有一点P′(2
,2),则点P′在平面α内的射影P的坐标为 _________ ;
(2)已知平面β内的曲线C′的方程是(x′﹣
) 2 +2y 2 ﹣2=0,则曲线C′在平面α内的射影C的方程是 _________ .
(1)已知平面β内有一点P′(2

(2)已知平面β内的曲线C′的方程是(x′﹣


(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.
(1)已知平面β内有一点P′(2
,2),则点P′在平面α内的射影P的坐标为 _________ ;
(2)已知平面β内的曲线C′的方程是(x′﹣
) 2 +2y 2 ﹣2=0,则曲线C′在平面α内的射影C的方程是 _________ .
(1)已知平面β内有一点P′(2

(2)已知平面β内的曲线C′的方程是(x′﹣


(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.
(1)已知平面β内有一点P′(2
,2),则点P′在平面α内的射影P的坐标为 _________ ;
(2)已知平面β内的曲线C′的方程是(x′﹣
) 2 +2y 2 ﹣2=0,则曲线C′在平面α内的射影C的方程是 _________ .
(1)已知平面β内有一点P′(2

(2)已知平面β内的曲线C′的方程是(x′﹣





▼优质解答
答案和解析
距离y轴的距离变成2
cos45°=2,
∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣
) 2 2 +2y 2 2 ﹣2=0上的任意点为A(x 0 0 ,y 0 0 ),A在平面α上的射影是(x,y)
根据上一问的结果,得到x=
x 0 0 ,y=y 0 0 ,
∵
,
∴
∴(x﹣1) 2 2 +y 2 2 =1,
故答案为:(2,2);(x﹣1) 2 2 +y 2 2 =1.
(2,2);(x﹣1) 2 +y 2 =1. |
(2,2);(x﹣1) 2 +y 2 =1.
(2,2);(x﹣1) 2 +y 2 =1.
(2,2);(x﹣1) 2 +y 2 =1.
(2,2);(x﹣1) 2 +y 2 =1.
(2,2);(x﹣1) 2 2 +y 2 2 =1. (1)由题意知点P′在平面上的射影P距离x轴的距离不变是2, 距离y轴的距离变成2 ![]() ∴点P′在平面α内的射影P的坐标为(2,2) (2)设(x′﹣ ![]() 根据上一问的结果,得到x= ![]() ∵ ![]() ∴ ![]() ∴(x﹣1) 2 +y 2 =1, 故答案为:(2,2);(x﹣1) 2 +y 2 =1. |
(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,
距离y轴的距离变成2
cos45°=2,
∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣
) 2 +2y 2 ﹣2=0上的任意点为A(x 0 ,y 0 ),A在平面α上的射影是(x,y)
根据上一问的结果,得到x=
x 0 ,y=y 0 ,
∵
,
∴
∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
距离y轴的距离变成2

∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣

根据上一问的结果,得到x=

∵

∴

∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,
距离y轴的距离变成2
cos45°=2,
∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣
) 2 +2y 2 ﹣2=0上的任意点为A(x 0 ,y 0 ),A在平面α上的射影是(x,y)
根据上一问的结果,得到x=
x 0 ,y=y 0 ,
∵
,
∴
∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
距离y轴的距离变成2

∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣

根据上一问的结果,得到x=

∵

∴

∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,
距离y轴的距离变成2
cos45°=2,
∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣
) 2 +2y 2 ﹣2=0上的任意点为A(x 0 ,y 0 ),A在平面α上的射影是(x,y)
根据上一问的结果,得到x=
x 0 ,y=y 0 ,
∵
,
∴
∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
距离y轴的距离变成2

∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣

根据上一问的结果,得到x=

∵

∴

∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,
距离y轴的距离变成2
cos45°=2,
∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣
) 2 +2y 2 ﹣2=0上的任意点为A(x 0 ,y 0 ),A在平面α上的射影是(x,y)
根据上一问的结果,得到x=
x 0 ,y=y 0 ,
∵
,
∴
∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2

∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣

根据上一问的结果,得到x=

∵

∴

∴(x﹣1) 2 +y 2 =1,
故答案为:(2,2);(x﹣1) 2 +y 2 =1.
距离y轴的距离变成2

∴点P′在平面α内的射影P的坐标为(2,2)
(2)设(x′﹣

根据上一问的结果,得到x=

∵

∴

∴(x﹣1) 2 2 +y 2 2 =1,
故答案为:(2,2);(x﹣1) 2 2 +y 2 2 =1.
看了 (2011•湖北)如图,直角...的网友还看了以下:
已知函数f(x)对任意实数x均有f(x0=kf(x+2),其中常数k为负数,且f(x)在区间[0, 2020-05-16 …
f(x)在X上有界的充分必要条件是它在X上既有上界又有下界充分性:反证法,假设f(x)在X上没有上 2020-06-23 …
在求傅里叶级数的时候,为什么f(x)=2sin(3/x)(-π≤x≤π)会在x=±π处有间断点?正 2020-07-13 …
是不是有这个结论:1.lim(f(x)g(x))存在,limf(x)存在且不为0,则limg(x) 2020-07-30 …
若关于X的二次方程x2+(m-1)x+1=0在区间0,2上有零点关于x的二次方程x2+(m-1)x 2020-07-31 …
关于充分必要条件有点糊涂,例:F(x)在X上有界的充分必要条件是它在X上既有上界又有下界.证明:首 2020-07-31 …
设函数f(x)在数集X上有定义,试证:函数f(x)在X上有界的充分必要条件是它在上既有上界又有设函 2020-07-31 …
一道求导的概念题目!设g(x)在x=x0的某领域内有定义,f(x)=|x-x0|g(x),则f(x) 2020-11-01 …
需要氧气的跨膜运输方式都有什么?物质X只有在有氧气的情况下才能运输,能判定他就是主动运输吗? 2020-11-16 …
极限定义书上是对于任意ε>0,存在X>0,当|x|>X,恒有|f(x)-A|<ε因为X=X(极限定义 2020-12-01 …