早教吧作业答案频道 -->数学-->
如果有理数x,y满足|x-1|+(xy-2)2=0.(1)求x,y的值;(2)试求1xy+1(x+1)(y+1)+1(x+2)(y+2)+…+1(x+2009)(y+2009)的值.
题目详情
2
+
+
+…+
的值.
1 1 xy xy
1 1 (x+1)(y+1) (x+1)(y+1)
1 1 (x+2)(y+2) (x+2)(y+2)
1 1 (x+2009)(y+2009) (x+2009)(y+2009)
| 1 |
| xy |
| 1 |
| (x+1)(y+1) |
| 1 |
| (x+2)(y+2) |
| 1 |
| (x+2009)(y+2009) |
| 1 |
| xy |
| 1 |
| (x+1)(y+1) |
| 1 |
| (x+2)(y+2) |
| 1 |
| (x+2009)(y+2009) |
▼优质解答
答案和解析
(1)∵x-1|≥0,(xy-2)22≥0,又|x-1|+(xy-2)22=0
∴|x-1|=0;(xy-2)22=0
∴x=1,y=2;
(2)原式=
+
+
+
+…+
=
+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 12 2 2+
+
+
+…+
=
+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 12×3 2×3 2×3+
+
+…+
=
+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 13×4 3×4 3×4+
+…+
=
+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 14×5 4×5 4×5+…+
=
+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 12010×2011 2010×2011 2010×2011
=
+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 12 2 2+
-
+
-
+
-
+…+
-
+
-
=
.
1 1 12 2 2-
+
-
+
-
+…+
-
+
-
=
.
1 1 13 3 3+
-
+
-
+…+
-
+
-
=
.
1 1 13 3 3-
+
-
+…+
-
+
-
=
.
1 1 14 4 4+
-
+…+
-
+
-
=
.
1 1 14 4 4-
+…+
-
+
-
=
.
1 1 15 5 5+…+
-
+
-
=
.
1 1 12009 2009 2009-
+
-
=
.
1 1 12010 2010 2010+
-
=
.
1 1 12010 2010 2010-
=
.
1 1 12011 2011 2011=
.
2010 2010 20102011 2011 2011.
∴|x-1|=0;(xy-2)22=0
∴x=1,y=2;
(2)原式=
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 4×5 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2010×2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 1 |
| 2011 |
| 2010 |
| 2011 |
| 2010 |
| 2011 |
看了如果有理数x,y满足|x-1|...的网友还看了以下:
若K使方程组3X+5Y=K+2 2X+3Y=K的解XY的和为2求X.Y.K的值 2020-05-16 …
若K使方程组3X+5Y=K+2 2X+3Y=K的解XY的和为2,求X.Y.K的值 2020-05-16 …
不等式(x-1)^2009-(2^2009)*(x^2009)-6x-6 2020-06-02 …
设总体X~U(0,θ),θ>0为未知参数,X1,X2,…,Xn为其样本,.X=1nni=1Xi为样 2020-06-12 …
如图,将一刻度尺放在数轴上(数轴上的单位长度为1cm),刻度尺上的“0cm”和“9cm”分别对应数 2020-07-16 …
已知函数f(x)=lnx-ax2+(a-2)x.(I)讨论函数f(x)的单调性;(II)若f(x) 2020-08-01 …
(2014•滨湖区二模)(1)解不等式组1−x+13≥03−4(x−1)<6(2)解分式方程:1x 2020-08-02 …
(1)x.y均为整数,若5|(x+9y),求证:5|(8x+7y).(2)x.y,z均为整数,若11 2020-10-31 …
(2014•焦作一模)已知函数f(x)=lnx-ax2+(a-2)x.(1)若f(x)在x=0处取得 2020-11-12 …
(2)先化简(2+e大−2)÷大+2大2−4,然后请手给大选取一个合适的值,再求此时原式的值;(2) 2021-01-02 …