早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•安徽模拟)设函数f(x)=ex,x≤0lnx,x>0,若对任意给定的a∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=ma2+2m2a,则正实数m的最小值是()A.12B.1C.32D.2

题目详情
(2014•安徽模拟)设函数f(x)=
ex,x≤0
lnx,x>0
,若对任意给定的a∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=ma2+2m2a,则正实数m的最小值是(  )

A.
1
2

B.1
C.
3
2

D.2
▼优质解答
答案和解析
由已知条件知:ma2+2m2a>0;
∴若x≤0,则f(x)=ex>0,∴f(f(x))=lnex=x≤0,∴这种情况不存在;
若0<x≤1,则f(x)=lnx≤0,∴f(f(x))=elnx=x≤1,x>1时,f(x)=lnx>0,f(f(x)=ln(lnx)∈R;
∴只有f(f(x))>1,即ma2+2m2a>1时,对任意给定的a∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=ma2+2m2a;
∵a∈(1,+∞),∴m+2m2≥1,即2m2+m-1≥0,∵m>0,∴解得m
1
2

∴正实数m的最小值是
1
2

故选A.