早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设x1,x2是实系数一元二次方程ax2+bx+c=0的两个根,若x1是虚数,x21x2是实数,则S=1+

题目详情
设x1,x2是实系数一元二次方程ax2+bx+c=0的两个根,若x1是虚数,
x
2
1
x2
是实数,则S=1+
x1
x2
+(
x1
x2
)2+(
x1
x2
)4+(
x1
x2
)8+(
x1
x2
)16+(
x1
x2
)32=___.
▼优质解答
答案和解析
设x1=s+ti(s,t∈R,t≠0).则x2=s-ti.
则x1+x2=2s,x1x2=s2+t2
x
2
1
x2
=
(s+ti)2
s-ti
=
s3-3st2
s2+t2
+
3s2t-t3
s2+t2
i是实数,
∴3s2t-t3=0,
∴3s2=t2
∴x1+x2=2s,x1x2=s2+t2
∴4s2=(x1+x2)2=
x
2
1
+
x
2
2
+2x1x2=x1x2
(
x1
x2
)2+
x1
x2
+1=0,
x1
x2
=ω,
则ω2+ω+1=0,
∴ω3=1.
则S=1+
x1
x2
+(
x1
x2
)2+(
x1
x2
)4+(
x1
x2
)8+(
x1
x2
)16+(
x1
x2
)32=1+ω+ω2481632
=0+ω+ω2+ω+ω2
=-2.
故答案为:-2.