早教吧 育儿知识 作业答案 考试题库 百科 知识分享

复习完“四边形”内容后,老师出示下题:如图1,直角三角板的直角顶点P在正方形ABCD的对角线BD上移动,一直角边始终经过点C,另一直角边交直线AB于点Q,连接QC.求证:∠PQC=∠DBC.(1)

题目详情
复习完“四边形”内容后,老师出示下题:
如图1,直角三角板的直角顶点P在正方形ABCD的对角线BD上移动,一直角边始终经过点C,另一直角边交直线AB于点Q,连接QC.求证:∠PQC=∠DBC.
(1)请你完成上面这道题;
(2)完成上题后,同学们在老师的启发下进行了反思,提出许多问题,如:
①如图2,若将题中的条件“正方形ABCD”改为“矩形ABCD”,其余条件都不变,是否仍能得到∠PQC=∠DBC?
②如图3,若将题中的条件“正方形ABCD”改为“直角梯形ABCD”,其余条件都不变,是否仍能得到∠PQC=∠DBC?

请你对上述反思①和②作出判断,在下列横线上填写“是”或“否”:①______;②______.并对①、②中的判断,选择其中一个说明理由.
▼优质解答
答案和解析
证明:(1)∵四边形ABCD为正方形,
∴∠ABC=90°,∠ABD=∠DBC=
1
2
∠ABC=45°,
过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.
则∠PNB=∠PMB=90°,MP=NP.
∴∠MPN=90°,即∠QPN+∠QPM=90°.
∵∠CPM+∠QPM=∠QPC=90°,
∴∠CPM=∠QPN,
在△MPC和△NPQ中,
∠CPM=∠QPN
MP=NP
∠PMC=∠PNQ=90°

∴△MPC≌△NPQ(ASA).                       
∴PC=PQ.
∴∠PQC=∠PCQ=45°=∠DBC.
(2)①是;②是.               
①的证明:如图2,
过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.
∵四边形ABCD是矩形,
∴∠NBM=∠PMB=∠PNB=90°,
∴四边形PNBM为矩形,则MB=NP,∠MPN=90°.
∵∠CPM+∠QPM=∠QPC=90°,∠QPN+∠QPM=∠MPN=90°,
∴∠CPM=∠QPN,
又∵∠PMC=∠PNQ=90°,
∴△MPC∽△NPQ,
PC
PQ
MP
NP

∵PN=MB,
PC
PQ
MP
NP
MP
MB

在Rt△PBM中,tan∠PBM=
PM
BM

在Rt△PQC中tan∠PQC=
PC
PQ

∴tan∠PBM=tan∠PQC,
∴∠PBM=∠PQC,
即∠PQC=∠DBC.
②的证明:如图3,
过点P作PM⊥BC,PN⊥AB,垂足分别为M、N,
∵四边形ABCD是梯形,
∴∠NBM=∠PMB=∠PNB=90°,
∴四边形PNMB是矩形,则MB=NP,∠MPN=90°.
∵∠CPM+∠QPM=∠QPC=90°,∠QPN+∠QPM=∠MPN=90°,
∴∠CPM=∠QPN,
又∵∠PMC=∠PNQ=90°,
∴△MPC∽△NPQ,
PC
PQ
MP
NP

∵PN=MB,
PC
PQ
MP
NP
MP
MB

在Rt△PBM中,tan∠PBM=
PM
BM

在Rt△PQC中tan∠PQC=
PC
PQ

∴tan∠PBM=tan∠PQC,
∴∠PBM=∠PQC,即∠PQC=∠DBC.