早教吧作业答案频道 -->数学-->
是否存在常数a、b、c使得等式1×22+2×32+3×42+…+n(n+1)2=(an2+bn+c)对一切正整数n都成立?并证明你的结论.
题目详情
是否存在常数a、b、c使得等式1×2 2 +2×3 2 +3×4 2 +…+n(n+1) 2 = (an 2 +bn+c)对一切正整数n都成立?并证明你的结论.
▼优质解答
答案和解析
答案:
解析:
∵n(n+1)2=n3+2n2+n, ∴Sn=1×22+2×32+3×42+…+n(n+1)2 =(13+2×12+1)+(23+2×22+2)+…+(n3+2×n2+n) =(13+23+…+n3)+2(12+22+…+n2)+(1+2+…+n). 由于下列等式对正整数n都成立, 13+23+…+n3=, 12+22+…+n2=, 1+2+…+n=. 由此可知Sn=(3n2+11n+10). 综上所述,当a=3,b=11,c=10时,题设的等式对一切正整数n都成立.
分 析:
数列求和在数列中占有重要的位置,有关存在性、探索性的问题是检验学生能力的关键所在.
解析:
∵n(n+1)2=n3+2n2+n, ∴Sn=1×22+2×32+3×42+…+n(n+1)2 =(13+2×12+1)+(23+2×22+2)+…+(n3+2×n2+n) =(13+23+…+n3)+2(12+22+…+n2)+(1+2+…+n). 由于下列等式对正整数n都成立, 13+23+…+n3=, 12+22+…+n2=, 1+2+…+n=. 由此可知Sn=(3n2+11n+10). 综上所述,当a=3,b=11,c=10时,题设的等式对一切正整数n都成立.
分 析:
数列求和在数列中占有重要的位置,有关存在性、探索性的问题是检验学生能力的关键所在.
看了 是否存在常数a、b、c使得等...的网友还看了以下:
⑴对有理数a,b,规定运算a*b=ab+a+b,则方程½x*3=4的解是什么?⑵当m取何整数时,⑴ 2020-04-08 …
6.7+5x=9.75 10x+8.5×3=30.58.4x-6.8x=1.28 1+4分之3x= 2020-05-16 …
求一元一次不等式的解集 1、1/4x+2≥-6又4/3 2、-0.5x≤1.5x-4 3、5x-7 2020-06-27 …
例4试写出4个连续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N是不大于5的所有质数的 2020-06-27 …
——||数学的2题,1.已知2/1×2=2/1+2,3/2×3=3/2+3,4/3×4=4/3+4 2020-06-29 …
1)利用数学归纳法,证明P(n):n^4+2n³-n²+14n能被8整除.当n=k,k^4+2k³ 2020-07-13 …
是否存在常数a、b、c使得等式1×22+2×32+3×42+…+n(n+1)2=(an2+bn+c 2020-07-15 …
根据下列要求编写程序,并写出每一个步骤的缘由任选一个编程求S的值S=(2+4)/(1+3)+(4+ 2020-08-02 …
编写程序求1+(1+2)+(1+2+3)+……前100项的和……vb用vb最好完整一点Private 2020-11-01 …
两道令人摸不着头脑的数学题1、设π的整数部分为a,小数部分为b,若1/3(ax-5)=b-(a/3) 2020-11-15 …