早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设a为第二象限角,若tan(a+兀/4)=1/2,则sina+cosa=

题目详情
设a为第二象限角,若tan(a+兀/4)=1/2,则sina+cosa=
▼优质解答
答案和解析
解由a为二象限角,tan(a+π/4)=1/2
知a+π/4仍为二象限角,
则由sin²(a+π/4)+cos²(a+π/4)=1
即tan²(a+π/4)+1=1/cos²(a+π/4)
即cos²(a+π/4)=1/(tan²(a+π/4)+1)=1/((1/2)²+1)=4/5
即sin²(a+π/4)=1/5
由a+π/4仍为二象限角,
即sin(a+π/4)=√5/5
即sina+cosa
=√2(√2/2sina+√2/2cosa)
=√2sin(a+π/4)
=√2*√5/5
=√10/5.