早教吧作业答案频道 -->数学-->
对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.
题目详情
对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.
(1)验证g(x)=x+sin
是以6π为周期的余弦周期函数;
(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
(1)验证g(x)=x+sin
x |
3 |
(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
▼优质解答
答案和解析
(1)g(x)=x+sin
;
∴cosg(x+6π)=cos(x+6π+sin
)=cos(x+sin
)=cosg(x)
∴g(x)是以6π为周期的余弦周期函数;
(2)∵f(x)的值域为R;
∴存在x0,使f(x0)=c;
又c∈[f(a),f(b)];
∴f(a)≤f(x0)≤f(b),而f(x)为增函数;
∴a≤x0≤b;
即存在x0∈[a,b],使f(x0)=c;
(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;
则:cosf(u0+T)=1,T≤u0+T≤2T;
∴cosf(u0)=1,且0≤u0≤T;
∴u0为方程cosf(x)=1在[0,T]上的解;
∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):
①当x=0时,f(0)=0,∴显然成立;
②当x=T时,cosf(2T)=cosf(T)=1;
∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;
1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;
cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;
∴f(T)<f(x0+T)<f(2T);
∴4π<2k2π<6π;
∴2<k2<3,无解;
2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;
则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;
但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;
3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;
③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;
设其解为f(x1),f(x2),…,f(xn),(x1<x2<…<xn);
则f(x1+T),f(x2+T),…,f(xn+T)为方程cosf(x)=c在(T,2T)上的解;
又f(x+T)∈(4π,8π);
而f(x1)+4π,f(x2)+4π,…,f(xn)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;
∴f(xi+T)=f(xi)+4π=f(xi)+f(T);
∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
x |
3 |
∴cosg(x+6π)=cos(x+6π+sin
x+6π |
3 |
x |
3 |
∴g(x)是以6π为周期的余弦周期函数;
(2)∵f(x)的值域为R;
∴存在x0,使f(x0)=c;
又c∈[f(a),f(b)];
∴f(a)≤f(x0)≤f(b),而f(x)为增函数;
∴a≤x0≤b;
即存在x0∈[a,b],使f(x0)=c;
(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;
则:cosf(u0+T)=1,T≤u0+T≤2T;
∴cosf(u0)=1,且0≤u0≤T;
∴u0为方程cosf(x)=1在[0,T]上的解;
∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):
①当x=0时,f(0)=0,∴显然成立;
②当x=T时,cosf(2T)=cosf(T)=1;
∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;
1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;
cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;
∴f(T)<f(x0+T)<f(2T);
∴4π<2k2π<6π;
∴2<k2<3,无解;
2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;
则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;
但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;
3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;
③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;
设其解为f(x1),f(x2),…,f(xn),(x1<x2<…<xn);
则f(x1+T),f(x2+T),…,f(xn+T)为方程cosf(x)=c在(T,2T)上的解;
又f(x+T)∈(4π,8π);
而f(x1)+4π,f(x2)+4π,…,f(xn)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;
∴f(xi+T)=f(xi)+4π=f(xi)+f(T);
∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
看了 对于定义域为R的函数g(x)...的网友还看了以下:
can't的't是什么意思?是it吗 2020-04-08 …
T-300的T是什么意思T-300碳纤维的T是什么意思 2020-04-08 …
KINLEE电子称Z/T是什么意思 2020-04-08 …
x=at^2中T指什么用间隔为0.02s的打点计时器的话.里面的T是多少,是恒定值吗 2020-04-08 …
pcs/t后边的t是什么意思?是给狗狗吃的钙片瓶子上印的我知道前边的PCS是几片的意思后边的T我想 2020-04-08 …
St中的t是street的第一个t还是第二个t,为什么? 2020-05-21 …
学以2l为周期的函数的展开式的时候,πx/l=t这个公式咋来的t是啥,和T什么区别 2020-05-21 …
substitute怎么读音标中s后面的t是读t还是d?即是读['sʌbsditjuːt]吗? 2020-06-06 …
r=x(t)i+y(t)j+z(t)k详解本人刚初二,对于三维空间什么的没有学过,还有那括号里的t 2020-06-14 …
关于周期的问题为什么数学中的T和ω在物理中都有所对应(公式相同,名称相同),但物理中都有单位,数学 2020-08-03 …