早教吧作业答案频道 -->数学-->
特征值证明问题设n阶矩阵A=(aij)的特征值为λ1,λ2,λ3……λn①λ1+λ2+λ3……+λn=a11+a22+ann;②λ1*λ2*λ3……λn=|A|
题目详情
特征值证明问题
设n阶矩阵A=(a ij)的特征值为λ1,λ2,λ3……λn
①λ1+λ2+λ3……+λn=a11+a22+ann;
②λ1*λ2*λ3……λn=|A|
设n阶矩阵A=(a ij)的特征值为λ1,λ2,λ3……λn
①λ1+λ2+λ3……+λn=a11+a22+ann;
②λ1*λ2*λ3……λn=|A|
▼优质解答
答案和解析
A的特征值 λ1,λ2,λ3……λn 是 A 有特征多项式 f(λ) = |A-λE| 的根.
即有 f(λ) = |A-λE| = (λ1-λ)(λ2-λ).(λn-λ) = (-λ)^n + (λ1+λ2+...+λn)(-λ)^(n-1) + ...+ λ1λ2...λn
行列式 |A-λE| 中出现 λ^(n-1) 的项 只有对角线上n个元素的乘积,即
在 (a11-λ)(a22-λ)...(ann-λ) 中.
且 (-λ)^(n-1) 的系数就是 a11+a22+...+ann
所以有 ① λ1+λ2+λ3……+λn=a11+a22+ann.
②的证明也是一样.λ=0时就是多项式的常数项.
即有 f(λ) = |A-λE| = (λ1-λ)(λ2-λ).(λn-λ) = (-λ)^n + (λ1+λ2+...+λn)(-λ)^(n-1) + ...+ λ1λ2...λn
行列式 |A-λE| 中出现 λ^(n-1) 的项 只有对角线上n个元素的乘积,即
在 (a11-λ)(a22-λ)...(ann-λ) 中.
且 (-λ)^(n-1) 的系数就是 a11+a22+...+ann
所以有 ① λ1+λ2+λ3……+λn=a11+a22+ann.
②的证明也是一样.λ=0时就是多项式的常数项.
看了 特征值证明问题设n阶矩阵A=...的网友还看了以下:
设A是3阶是对阵矩阵,特征值是2,2,3,属于特征值3的特征向量是a1=(111)^T.求矩阵A. 2020-04-13 …
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1 2020-04-13 …
线性代数实对称矩阵特征向量问题设三阶实对称矩阵特征值r1=r2=4,r3=2,向量X1=(1,1, 2020-04-13 …
实对称矩阵A的特征值为-2,1,1,其中-2的特征向量为(1,-1,1)由于A可以对角化,则特征值 2020-05-14 …
关于特征值特征向量的求解设三阶实对称阵A的特征值为1,2,3,A的属于特征值1,2的特征向量分别为 2020-05-14 …
求问一道线代题设λ1,λ2是方阵A的特征值,α1,α2分别是对应于λ1,λ2的特征向量,则()(A 2020-05-14 …
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1 2020-06-22 …
线性代数问题设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1= 2020-06-22 …
设3阶实对称矩阵A的特征值为λ1=1,λ2=2,λ3=3,属于特征值λ1和λ2的特征向量分别为α1 2020-07-16 …
设3阶实对数矩阵A的特征值是1,2,3,矩阵A属于特征值1,2的特征向量分别急求设3阶实对数矩阵A 2020-07-22 …