早教吧作业答案频道 -->数学-->
特征值证明问题设n阶矩阵A=(aij)的特征值为λ1,λ2,λ3……λn①λ1+λ2+λ3……+λn=a11+a22+ann;②λ1*λ2*λ3……λn=|A|
题目详情
特征值证明问题
设n阶矩阵A=(a ij)的特征值为λ1,λ2,λ3……λn
①λ1+λ2+λ3……+λn=a11+a22+ann;
②λ1*λ2*λ3……λn=|A|
设n阶矩阵A=(a ij)的特征值为λ1,λ2,λ3……λn
①λ1+λ2+λ3……+λn=a11+a22+ann;
②λ1*λ2*λ3……λn=|A|
▼优质解答
答案和解析
A的特征值 λ1,λ2,λ3……λn 是 A 有特征多项式 f(λ) = |A-λE| 的根.
即有 f(λ) = |A-λE| = (λ1-λ)(λ2-λ).(λn-λ) = (-λ)^n + (λ1+λ2+...+λn)(-λ)^(n-1) + ...+ λ1λ2...λn
行列式 |A-λE| 中出现 λ^(n-1) 的项 只有对角线上n个元素的乘积,即
在 (a11-λ)(a22-λ)...(ann-λ) 中.
且 (-λ)^(n-1) 的系数就是 a11+a22+...+ann
所以有 ① λ1+λ2+λ3……+λn=a11+a22+ann.
②的证明也是一样.λ=0时就是多项式的常数项.
即有 f(λ) = |A-λE| = (λ1-λ)(λ2-λ).(λn-λ) = (-λ)^n + (λ1+λ2+...+λn)(-λ)^(n-1) + ...+ λ1λ2...λn
行列式 |A-λE| 中出现 λ^(n-1) 的项 只有对角线上n个元素的乘积,即
在 (a11-λ)(a22-λ)...(ann-λ) 中.
且 (-λ)^(n-1) 的系数就是 a11+a22+...+ann
所以有 ① λ1+λ2+λ3……+λn=a11+a22+ann.
②的证明也是一样.λ=0时就是多项式的常数项.
看了 特征值证明问题设n阶矩阵A=...的网友还看了以下:
非线性齐次微分方程的特解怎么求的?比如,求微分方程y''+y'=2e^(-x)的通解特征方程的根为r 2020-03-30 …
线性代数:设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,已知A的属于λ1=-1的特征向量 2020-04-13 …
设λ1,λ2是三阶对称矩阵A的两个不同的特征值,α=(1,2,k)的转置与β=(-2,k+1,1) 2020-04-13 …
求问一道线代题设λ1,λ2是方阵A的特征值,α1,α2分别是对应于λ1,λ2的特征向量,则()(A 2020-05-14 …
求微分方程y''-3y'+2y=2e^x满足y|x=0 =1,dy/dx|x=0 =0的特解对应的 2020-05-17 …
某市发行福利彩票3000万元,每张彩票面值2元,设特等奖10个,一等奖50个,二等奖100个,三等 2020-06-19 …
有道数列题:a1=1,a2=3an+2=3an+1-2an,求an.我能做出来,但老师讲了另一个方 2020-07-09 …
某市发行福利彩票3000万元,每张彩票面值2元,设特等奖10个,一等奖50个,二等奖100个,三等 2020-07-16 …
甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度 2020-07-21 …
初一历史明朝统治者为假期君权采取的措施有1.设立三审六部2.设三司3.设转运使初一历史明朝统治者为假 2020-12-17 …