早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作⊙O,DF与⊙O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保

题目详情
(2014•怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F
(1)求证:△ADE∽△BEF;
(2)设H是ED上一点,以EH为直径作⊙O,DF与⊙O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,
3
≈1.73,π≈3.14).
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是矩形,
∴∠A=∠B=90°.
∵EF⊥DE,
∴∠DEF=90°.
∴∠AED=90°-∠BEF=∠EFB.
∵∠A=∠B,∠AED=∠EFB,
∴△ADE∽△BEF.

(2)∵DF与⊙O相切于点G,
∴OG⊥DG.
∴∠DGO=90°.
∵DH=OH=OG,
∴sin∠ODG=
OG
OD
=
1
2

∴∠ODG=30°.
∴∠GOE=120°.
∴S扇形OEG=
120π×32
360
=3π.
在Rt△DGO中,
cos∠ODG=
DG
DO
=
DG
6
=
3
2

∴DG=3
3

在Rt△DEF中,
tan∠EDF=
EF
DE
=
EF
9
=
3
3

∴EF=3
3

∴S△DEF=
1
2
DE•EF=
1
2
×9×3
3
=
27
3
2

S△DGO=
1
2
DG•GO=
1
2
×3
3
×3=
9
3
2

∴S阴影=S△DEF-S△DGO-S扇形OEG
=
27
3
2
-
9
3
2
-3π
=.9
3
-3π
≈9×1.73-3×3.14
=6.15
≈6.2
∴图中阴影部分的面积约为6.2.