早教吧作业答案频道 -->其他-->
(2010•成都)已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.(1)求证:P是△ACQ的外心;(2)若tan∠ABC
题目详情

![]() |
AD |
(1)求证:P是△ACQ的外心;
(2)若tan∠ABC=
3 |
4 |
(3)求证:(FP+PQ)2=FP•FG.
▼优质解答
答案和解析
(1)证明:∵C是
的中点,∴
=
,
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴
=
∴
=
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC=
=
,CF=8,
得BF=
.
∴由勾股定理,得BC=
=
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=
=
,BC=
,
∴AC=10,
易知Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC,
∴CQ=
=
;
(3)证明:∵AB是⊙O的直径,∴∠ADB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴
=
,即AF•BF=FP•FG
易知Rt△ACF∽Rt△CBF,
∴CF2=AF•BF(或由射影定理得)
∴FC2=PF•FG,
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)2=FP•FG.
![]() |
AD |
![]() |
AC |
![]() |
CD |
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴
![]() |
AC |
![]() |
AE |
∴
![]() |
AE |
![]() |
CD |
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC=
CF |
BF |
3 |
4 |
得BF=
32 |
3 |
∴由勾股定理,得BC=
CF2+BF2 |
40 |
3 |
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=
AC |
BC |
3 |
4 |
40 |
3 |
∴AC=10,
易知Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC,
∴CQ=
AC2 |
BC |
15 |
2 |
(3)证明:∵AB是⊙O的直径,∴∠ADB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴
AF |
FG |
FP |
BF |
易知Rt△ACF∽Rt△CBF,
∴CF2=AF•BF(或由射影定理得)
∴FC2=PF•FG,
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)2=FP•FG.
看了 (2010•成都)已知:如图...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
判断下列命题是否正确,并说明理由:(1)空间两条直线可以确定一个平面(2)垂直于同一条直线的两条直 2020-04-25 …
判断下列命题是否正确,并说明理由:(1)空间两条直线可以确定一个平面(2)垂直于同一条直线的两条直 2020-04-25 …
下列说法错误的是()A.直线a∥b,若c与a相交,则b与c也相交B.直线a与b相交,c与a相交,则 2020-06-08 …
79、停用备用电源自投装置时应().(A)先停交流,后停直流;(B)先停直流,后停交流;(C)交直 2020-06-08 …
万用表测交直流在不确定电源是交直流的情况下,能否从最大档往下任意交直流试着测, 2020-07-12 …
下列诗句里能反映隋唐农业发展特点的有①炉火照天地,红星乱紫烟②海将盐作雪,山用火耕田③云帆转辽海, 2020-07-28 …
两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是()A.一定是异面直线B.一定是 2020-08-02 …
什么叫异面直线相交两条异面直线所成的角的定义:直线a,b是异面直线,经过空间一点O,分别引直线A/ 2020-08-02 …
钳形电流表都是交直流两用吗? 2020-11-11 …