早教吧作业答案频道 -->数学-->
若实数a,b,c满足a2+b2+c2=1,则3ab-3bc+2c2的最大值为.
题目详情
若实数a,b,c满足a2+b2+c2=1,则3ab-3bc+2c2的最大值为___.
▼优质解答
答案和解析
不妨考虑c,当c=0时,有3ab-3bc+2c2=3ab≤
=
,
当c≠0时,3ab-3bc+2c2=
=
,
设x=
,y=
,则可令M=3ab-3bc+2c2=
,
即有Mx2-3xy+My2+M+3y-2=0,
由于x为实数,则有判别式△1=9y2-4M(My2+M+3y-2)≥0,
即有(9-4M2)y2-12My-4M(M-2)≥0,
由于y为实数,则△2=144M2+16M(9-4M2)(M-2)≤0,
即有M(M-3)(2M2+2M-3)≤0,
由于求M的最大值,则M>0,则M≤3.
故答案为:3.
3(a2+b2) |
4 |
3 |
4 |
当c≠0时,3ab-3bc+2c2=
3ab-3bc+2c2 |
a2+b2+c2 |
3•
| ||||||
(
|
设x=
a |
c |
b |
c |
3xy-3y+2 |
x2+y2+1 |
即有Mx2-3xy+My2+M+3y-2=0,
由于x为实数,则有判别式△1=9y2-4M(My2+M+3y-2)≥0,
即有(9-4M2)y2-12My-4M(M-2)≥0,
由于y为实数,则△2=144M2+16M(9-4M2)(M-2)≤0,
即有M(M-3)(2M2+2M-3)≤0,
由于求M的最大值,则M>0,则M≤3.
故答案为:3.
看了 若实数a,b,c满足a2+b...的网友还看了以下:
在三角形ABC中,角A,B,C的对边分别为a,b,c,满足(c-2a)cosB bcosC=0在三 2020-04-05 …
如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系 2020-05-16 …
已知ΔABC的内角A.B.C满足sin2A+sin(A-B已知ΔABC的内角A.B.C满足sin2 2020-06-27 …
在三角形,设a,b,c满足条件b2+c2-bc=a2和c/b=1/2+根号3,求角A和tanB的值 2020-07-09 …
条件等式求值~帮忙做一下...1.已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+ 2020-07-24 …
1.已知a,b,c满足ab+a+b=bc+b+c=ca+c+a=3求(a+1)(b+1(c+1)的 2020-08-01 …
①正实数x,y,满足2x+y+6=xy,则求xy的最小值?②正数a,b,c,则a+1/b,b+1/c 2020-11-19 …
已知实数a,b,c满足丨a-√2|+√b-2=√c-3+√3-c.(1)求a,b,c的值.(2已知实 2020-11-20 …
1.已知m^2-5m-1=0,则2m^2-5m+m^-2=?2.已知非负数a.b.c满足条件a+b= 2020-12-07 …
已知非负数a,b,c满足a+b=7,c-a=5,设S=a+b+c的最大值已知非负数a,b,c满足条件 2020-12-07 …