早教吧作业答案频道 -->数学-->
在△ABC中,有下列结论:①若a2>b2+c2,则△ABC为钝角三角形②若a2=b2+c2+bc,则A为60°③若a2+b2>c2,则△ABC为锐角三角形④若A:B:C=1:2:3,则a:b:c=1:2:3其中正确的个数为()A.2B.3
题目详情
在△ABC中,有下列结论:
①若a2>b2+c2,则△ABC为钝角三角形
②若a2=b2+c2+bc,则A为60°
③若a2+b2>c2,则△ABC为锐角三角形
④若A:B:C=1:2:3,则a:b:c=1:2:3
其中正确的个数为( )
A. 2
B. 3
C. 1
D. 4
①若a2>b2+c2,则△ABC为钝角三角形
②若a2=b2+c2+bc,则A为60°
③若a2+b2>c2,则△ABC为锐角三角形
④若A:B:C=1:2:3,则a:b:c=1:2:3
其中正确的个数为( )
A. 2
B. 3
C. 1
D. 4
▼优质解答
答案和解析
对于①,若a2>b2+c2,则b2+c2-a2<0,即有cosA<0,即A为钝角,故①对;
对于②,若a2=b2+c2+bc,即b2+c2-a2=-bc,则cosA=
=-
,即有A=120°,故②错;
对于③,若a2+b2>c2,则a2+b2-c2>0,即cosC>0,即C为锐角,不能说明A,B也是锐角,故③错;
对于④,若A:B:C=1:2:3,则A=30°,B=60°,C=90°,故a:b:c=sin30°:sin60°:sin90°
=1:
:2.故④错.
故选C.
对于②,若a2=b2+c2+bc,即b2+c2-a2=-bc,则cosA=
b2+c2−a2 |
2bc |
1 |
2 |
对于③,若a2+b2>c2,则a2+b2-c2>0,即cosC>0,即C为锐角,不能说明A,B也是锐角,故③错;
对于④,若A:B:C=1:2:3,则A=30°,B=60°,C=90°,故a:b:c=sin30°:sin60°:sin90°
=1:
3 |
故选C.
看了 在△ABC中,有下列结论:①...的网友还看了以下:
(b-a)(a-c)(c-b)=-[(-b+a)(-a+c)(-c+b)]对吧 也就是在(b-a) 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
初中数学c/(c-b)=-c(a-b)/(b-c)(a-b)c/(c-b)=-c(a-b)/(b- 2020-06-06 …
下列能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠C=∠C′B.∠B 2020-07-14 …
用公式法化简逻辑函数F=AB+A'C+B'CF=AB+A'C+B'C=AB+A'C(B+B’)+B 2020-08-01 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-08-01 …
(急)一道基本不等式证明题(高一数学)证明bc/a+ac/b+ab/c≥a+b+c证明:(请看我的 2020-08-03 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …
如图三条曲线表示C、Si和P元素的四级电离能变化趋势.下列说法正确的是()A.电负性:c>b>aB. 2020-11-11 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …