早教吧作业答案频道 -->其他-->
设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1,a3=b3,a7=b5.(Ⅰ)比较a15与b7的大小关系,并给出证明.(Ⅱ)是否存在正整数m,n,使得an=bm?若存在
题目详情
设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1,a3=b3,a7=b5.
(Ⅰ)比较a15与b7的大小关系,并给出证明.
(Ⅱ)是否存在正整数m,n,使得an=bm?若存在,求出m,n之间所满足的关系式;若不存在,请说明理由.
(Ⅰ)比较a15与b7的大小关系,并给出证明.
(Ⅱ)是否存在正整数m,n,使得an=bm?若存在,求出m,n之间所满足的关系式;若不存在,请说明理由.
▼优质解答
答案和解析
(Ⅰ)∵{an}为等差数列,公差为d,
∴a3=a1+2d,a7=a1+6d,a15=a1+14d
∵{bn}为等比数列,公比为q,
∴b3=b1q2,b5=b1q4,b7=b1q6,
∵a1=b1,a3=b3,
∴a1+2d=b1q2,
∴b1+2d=b1q2,
∴2d=b1(q2-1)--(1)
∵a7=b5,
∴a1+6d=b1q4,
∴ba1+6d=b1q4,
∴6d=b1(q4-1)--(2)
(2)÷(1)得:3=(q4-1)÷(q2-1),
∴q2+1=3,
∴q2=2,
∴2d=b1(q2-1)=(2-1)b1=b1,
∴a15=a1+14d=b1+7•(2d)=b1+7b1=8b1,
b7=b1q6=b1(q2)=8b1,
∴a15=b7;
(Ⅱ)存在n+1=2
,使得an=bm.证明如下:
由(Ⅰ)知q2=2,2d=b1,
∵an=bm,∴a1+(n-1)d=b1•qm-1,
∴2b1+(n-1)b1=2b1•2
,
∴n+1=2
.
∴a3=a1+2d,a7=a1+6d,a15=a1+14d
∵{bn}为等比数列,公比为q,
∴b3=b1q2,b5=b1q4,b7=b1q6,
∵a1=b1,a3=b3,
∴a1+2d=b1q2,
∴b1+2d=b1q2,
∴2d=b1(q2-1)--(1)
∵a7=b5,
∴a1+6d=b1q4,
∴ba1+6d=b1q4,
∴6d=b1(q4-1)--(2)
(2)÷(1)得:3=(q4-1)÷(q2-1),
∴q2+1=3,
∴q2=2,
∴2d=b1(q2-1)=(2-1)b1=b1,
∴a15=a1+14d=b1+7•(2d)=b1+7b1=8b1,
b7=b1q6=b1(q2)=8b1,
∴a15=b7;
(Ⅱ)存在n+1=2
| m+1 |
| 2 |
由(Ⅰ)知q2=2,2d=b1,
∵an=bm,∴a1+(n-1)d=b1•qm-1,
∴2b1+(n-1)b1=2b1•2
| m−1 |
| 2 |
∴n+1=2
| m+1 |
| 2 |
看了 设公差为d(d≠0)的等差数...的网友还看了以下:
正方形ABCD中,AB=m,AC=n,面积为S.得结论:1.S=n^2/22.m/n=√2/23. 2020-05-22 …
N^2+2n与2^N比较大小?用构造函数法(导数)!构造函数比较大小N属于正整数!当N`````时 2020-06-04 …
关于比较审敛法.如判断(n2+1)/(n+1)(n+2)(n+3)的敛散性,如与1/n比较,则趋. 2020-06-22 …
有序表归并~当将两个长度均为n的有序表A=(a1,a2,…,an)与B=(b1,b2,…,bn)( 2020-06-30 …
递降归纳法数学归纳法并不是只得递降归纳法数学归纳法并不是只能应用于形如“对任意的n”这样的命题.对 2020-07-15 …
已知如图,四边形ABCD中,AB=CD,E,F分别为AD,BC的中点,BA,FE,OD延长线分别位 2020-08-01 …
an=n^(n+1),bn=(n+1)^n比较大小并证明用数学归纳法这样证明是对的吗?当n=1时, 2020-08-03 …
当将两个长度为n的有序表A=(a1,a2,.,an)与B=(b1,b2,.,bn),(ai≠bj,1 2020-10-30 …
C—N键和C—C键长短比较不是应该C—N比C—C长吗?而书上说的恰好相反!怎么比较啊,我都糊涂了那S 2020-11-26 …
当将两个长度均为n的有序表A=(a1,a2,….,an)与B=(b1,b2,….,bn)(ai≠bj 2020-11-28 …