早教吧作业答案频道 -->其他-->
已知{an}是等差数列,其前n项的和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求数列{an}和{bn}的通项公式;(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
题目详情
已知{an}是等差数列,其前n项的和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
▼优质解答
答案和解析
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.…(3分)
由条件a4+b4=21,S4+b4=30,得方程组
解得
所以an=n+1,bn=2n,n∈N*.
(2)由题意知,cn=(n+1)×2n.
记Tn=c1+c2+c3+…+cn.
则Tn=c1+c2+c3+…+cn
=2×2+3×22+4×23+…+n×2n-1+(n+1)×2n,
2 Tn=2×22+3×23+…+(n-1)×2n-1+n×2n+(n+1)2n+1,
所以-Tn=2×2+(22+23+…+2n)-(n+1)×2n+1,
即Tn=n•2n+1,n∈N*.
由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.…(3分)
由条件a4+b4=21,S4+b4=30,得方程组
|
|
所以an=n+1,bn=2n,n∈N*.
(2)由题意知,cn=(n+1)×2n.
记Tn=c1+c2+c3+…+cn.
则Tn=c1+c2+c3+…+cn
=2×2+3×22+4×23+…+n×2n-1+(n+1)×2n,
2 Tn=2×22+3×23+…+(n-1)×2n-1+n×2n+(n+1)2n+1,
所以-Tn=2×2+(22+23+…+2n)-(n+1)×2n+1,
即Tn=n•2n+1,n∈N*.
看了 已知{an}是等差数列,其前...的网友还看了以下:
已知-1小于等于x小于等于1,n大于等于2,且n属于N正,求证:(1-x)的n次方+(1+x)的n 2020-05-13 …
已知点O(0,0),A0(0,1),An(6,7),点A1,A2…,An-1(n∈N,n≥2)是线 2020-05-17 …
命题“平行四边形的两组对边相等.”的逆命题是______. 2020-05-17 …
在没有量角器只有一把尺子的情况下怎样把一个圆分成N等份?如题,比如把一个圆分成等长的N段 2020-06-03 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
请教一道高数题.对于数列{Xn}={n/(n+1)}(n=1,2,3,...),给定(1)ε=0. 2020-06-11 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …