早教吧作业答案频道 -->数学-->
已知数列{an}满足a0=1/2,an=an-1+(1/n^2)an-1^2,求证:(n+1)/(n+2)
题目详情
已知数列{an}满足a0=1/2,an=an-1+(1/n^2)an-1^2,求证:(n+1)/(n+2)
▼优质解答
答案和解析
a(1) = a(0) + [a(0)]^2 = 3/4 < 1,
2/3 = 8/12 < 9/12 = 3/4 = a(1),
2/3 < a(1) < 1.
n=1时,2/3 < a(1) < 1,命题成立.
设n=k时,有 (k+1)/(k+2) < a(k) < k成立,
则,n=k+1时,a(k+1) = a(k) + [a(k)]^2/(k+1)^2 < k + k^2/(k+1)^2 < k + 1,
a(k+1) = a(k) + [a(k)]^2/(k+1)^2 > (k+1)/(k+2) + 1/(k+2)^2
(k+1)/(k+2) + 1/(k+2)^2 - (k+2)/(k+3) = [(k+2)^2-1 - (k+2)^2]/[(k+2)(k+3)] + 1/(k+2)^2
= 1/(k+2)^2 - 1/[(k+2)(k+3)]
= 1/(k+2)[1/(k+2) - 1/(k+3)]
> 0.
所以,a(k+1) > (k+1)/(k+2) + 1/(k+2)^2 > (k+2)/(k+3).
综合,有,
(k+2)/(k+3) < a(k+1) < k+1.
n=k+1时,命题成立.
由归纳法知,n>=1时,总有
(n+1)/(n+2) < a(n) < n
成立.
2/3 = 8/12 < 9/12 = 3/4 = a(1),
2/3 < a(1) < 1.
n=1时,2/3 < a(1) < 1,命题成立.
设n=k时,有 (k+1)/(k+2) < a(k) < k成立,
则,n=k+1时,a(k+1) = a(k) + [a(k)]^2/(k+1)^2 < k + k^2/(k+1)^2 < k + 1,
a(k+1) = a(k) + [a(k)]^2/(k+1)^2 > (k+1)/(k+2) + 1/(k+2)^2
(k+1)/(k+2) + 1/(k+2)^2 - (k+2)/(k+3) = [(k+2)^2-1 - (k+2)^2]/[(k+2)(k+3)] + 1/(k+2)^2
= 1/(k+2)^2 - 1/[(k+2)(k+3)]
= 1/(k+2)[1/(k+2) - 1/(k+3)]
> 0.
所以,a(k+1) > (k+1)/(k+2) + 1/(k+2)^2 > (k+2)/(k+3).
综合,有,
(k+2)/(k+3) < a(k+1) < k+1.
n=k+1时,命题成立.
由归纳法知,n>=1时,总有
(n+1)/(n+2) < a(n) < n
成立.
看了 已知数列{an}满足a0=1...的网友还看了以下:
设{an}是首项为1的正项数列,且(n+1)*[a(n+1)]^2-n*(an)^2+a(n+1) 2020-04-09 …
设集合M={-1,0},N={1,2,3,4,5}映射f:M→N.满足条件对每个x属于M,都有x+ 2020-05-15 …
设数列{An}(An>0,n=1,2...)满足当n趋于无穷时,An+1/An的极限等于0,则An 2020-05-16 …
设二次方程anx^2-a(n+1)x+1=0有两个根x1,x2,且满足6x1-2x1x2+6x2= 2020-05-16 …
急(n+1)an+12-nan2+an+1*an=0(n=1,2,)求an说明:an、an+1是角 2020-05-17 …
数列.(1720:16:46)设2次方程anx^2-an+1x+1=0(n=1,2,3,……)有两 2020-05-19 …
设a(n)>0(n=1,2,……),若存在N>0,当n>N时均有a(n+1)/a(n) 2020-06-03 …
已知等比数列an满足an大于0,n=1,2.且a5乘a2n-5=2的2n(n大于等于3),且a(5 2020-07-09 …
若{an}为单调递减数列,且an>0(n=1,2,...),级数(n=1)∑(-1)^(n-1)an 2020-11-11 …
1.设集合M={x|x^2-mx+6=0},N={1,2,3,6},若M⊆N,求m的取值范围.2.集 2020-12-31 …