早教吧作业答案频道 -->数学-->
在△ABC中,∠ABC=45°,H是高AD,BE的交点.(1)当∠BAC为锐角时(如图①),求证:BH=AC;(2)当∠BAC为钝角时(如图②),其他条件不变,请画出符合要求的图形.这时BH=AC还成立吗?若成
题目详情
在△ABC中,∠ABC=45°,H是高AD,BE的交点.
(1)当∠BAC为锐角时(如图①),求证:BH=AC;
(2)当∠BAC为钝角时(如图②),其他条件不变,请画出符合要求的图形.这
时BH=AC还成立吗?若成立,请证明;若不成立,请说明理由.
(1)当∠BAC为锐角时(如图①),求证:BH=AC;
(2)当∠BAC为钝角时(如图②),其他条件不变,请画出符合要求的图形.这

▼优质解答
答案和解析
(1)证明:∵∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠DAC=∠EBC.
∵∠ABC=45°,
∴△ABD是等腰直角三角形.
∴AD=BD.
又∵∠ADC=∠BDH,
∴Rt△BDH≌Rt△ADC(ASA).
∴BH=AC.
(2)如图,HB=AC仍然成立.
证明:∵∠H+∠HAE=90°,∠C+∠CAD=90°,
又∵∠HAE=∠DAC,
∴∠H=∠C.
∵∠ABC=45°,∠ADB=90°,
∴△ABD是等腰直角三角形.
∴AD=BD.
又∵∠BDH=∠ADC,∠H=∠C.
∴Rt△BDH≌Rt△ADC.(AAS)
∴BH=AC.

∴∠DAC=∠EBC.
∵∠ABC=45°,
∴△ABD是等腰直角三角形.
∴AD=BD.
又∵∠ADC=∠BDH,
∴Rt△BDH≌Rt△ADC(ASA).
∴BH=AC.
(2)如图,HB=AC仍然成立.
证明:∵∠H+∠HAE=90°,∠C+∠CAD=90°,
又∵∠HAE=∠DAC,
∴∠H=∠C.
∵∠ABC=45°,∠ADB=90°,
∴△ABD是等腰直角三角形.
∴AD=BD.
又∵∠BDH=∠ADC,∠H=∠C.
∴Rt△BDH≌Rt△ADC.(AAS)
∴BH=AC.
看了 在△ABC中,∠ABC=45...的网友还看了以下:
矿石A高温生成B+C,B+水生成D,D+C生成CACO3+H2O,A,B,C,D各是什么,A-B+C 2020-03-31 …
提示:D-C=0A-B,A-D,D-C,D-E,E-F=1A-D,C-F=2A-B,D-E,E-F 2020-04-06 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
设函数f(x)=x^2+bx+c 方程f(x)=2x的两个实根x1,x2满足x2-x1>2设函数f 2020-05-16 …
ABCD四种物质﹙或离子﹚中均含有同一种元素,其中A是单质,他们之间存在下图的转化关系,A—C—D 2020-05-16 …
关于这道题为什么我的做法得出来的结果不对呢?c^2=a^2+b^2-2abcosC=1+b^2-b 2020-06-07 …
100%收购公司其中一名法人股东涉及到的问题事实:A.B.C.D为四个法人。A.B公司为C公司的股东 2020-11-06 …
下列说法不正确的是A.若a,b,c,d成比例,则2a,2b,2c,2d也成比例.B.若a,b,c,d 2020-11-28 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
在△ABC中,a^2+c^2-b^2=ac,log4SinA+log4SinC=-1,且三角形面积为 2021-02-07 …