早教吧作业答案频道 -->数学-->
如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)(1)求∠CBD的度数.(2)当点P运动时,
题目详情
如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)

(1)求∠CBD的度数.
(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.

(1)求∠CBD的度数.
(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.
▼优质解答
答案和解析
(1)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-60°=120°,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°;
(2)不变,∠APB:∠ADB=2:1.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(3)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=120°,∠CBD=60°,
∴∠ABC+∠DBN=60°,
∴∠ABC=30°.
(1)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-60°=120°,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°;
(2)不变,∠APB:∠ADB=2:1.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(3)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=120°,∠CBD=60°,
∴∠ABC+∠DBN=60°,
∴∠ABC=30°.
看了 如图,已知AM∥BN,∠A=...的网友还看了以下:
用数学归纳法分别证明等差数列的前n项和公式sn=na1+1/2n(n-1)d与等比数列前n项和公式 2020-05-13 …
(2012•崇明县一模)已知数列{an}和{bn}的通项分别为an=2n-1,bn=2n+1-1( 2020-05-17 …
JavaScript做题:求和公式,分别输入a1,d和n的数值求出Sn,附公式Sn=[2a1+d( 2020-06-23 …
1、有一个n位数N,在它的两头各添上一个1后得到一个n+2位数M,若M是N的99倍,问n最小时,N 2020-06-23 …
若9^n+C1(n+1)+...+C(n-1)(n+1)*9+Cn(n+1)是11的倍数,则自然数 2020-07-09 …
请帮我看下这个公式是哪种概率统计方式?具有什么统计意义?给定一个样本,比如0.31,0.32,0. 2020-08-03 …
公式难题,abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?……………… 2020-08-04 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …
假若某蛋白质分子由n个氨基酸构成,它们含有3条多肽链,则它们具有的肽键数和R基团数分别是()A.n个 2021-01-01 …
假若某蛋白质分子由n个氨基酸构成,它们含有3条多肽链,则它们具有的肽键数和R基团数分别是()A.n个 2021-01-01 …