早教吧作业答案频道 -->数学-->
对于某些三角形或是四边形,我们可以直接用面积公式或是用割补法等来求它们的面积,下面我们研究一种求面积的新方法:如图1、2所示,分别过三角形或是四边形的顶点A、C作水平线的铅
题目详情
对于某些三角形或是四边形,我们可以直接用面积公式或是用割补法等来求它们的面积,下面我们研究一种求面积的新方法:
如图1、2所示,分别过三角形或是四边形的顶点A、C作水平线的铅垂线l1、l2,l1、l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B、D作水平线l3、l4,l3、l4之间的距离h叫做四边形的铅垂高.

【结论提炼】:容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=
dh”.
【尝试应用】:
已知:如图3,点A(-5,2)、B(5,0)、C(0,5),则△ABC的水平宽为___,铅垂高为___,所以△ABC的面积为___.
【再探新知】:

三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,小明进行了如下探索尝试:
(1)他首先在图4所示的平面直角坐标系中,取了A(-4,2)、B(1,5)、C(4,1)、D(-1,-4)四个点,得到了四边形ABCD.
小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是___;他又用其它的方法进行了计算,结果是___,由此他发现:用“S=
dh”这一方法对图4中的四边形求面积___(填“适合”或“不适合”).

(2)小明并没有放弃尝试,他又在图5所示的平面直角坐标系中,取了A(-5,2)、B(1,5)、C(4,2)、D(-1,-3)四个点,得到了四边形ABCD.小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是___,由此他发现:用“S=
dh”这一方法对图5中的四边形求面积___(填“适合”或“不适合”).
(3)小明很奇怪,就继续进行了进一步尝试,他在图6所示的平面直角坐标系中,取了A(-4,2)、B(1,5)、C(5,1)、D(1,-5)四个点,得到了四边形ABCD.通过计算他发现:用“S=
dh”这一方法对图6中的四边形求面积___(填“适合”或“不适合”).
通过以上尝试,小明恍然大悟得出结论:当四边形满足___条件时,四边形可以用“S=
dh”来求面积.
【学以致用】:
如图7,在平面直角坐标系中,点M坐标为(-2,0),抛物线的解析式为:y=
x2-2x+3,抛物线图象与y轴交于点A,与x轴交于B、C两点,点P为抛物线上一点,且位于B、C之间,请直接运用以上结论,写出当点P坐标为多少时,四边形AMPC面积最大.(直接写出P点坐标即可)

如图1、2所示,分别过三角形或是四边形的顶点A、C作水平线的铅垂线l1、l2,l1、l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B、D作水平线l3、l4,l3、l4之间的距离h叫做四边形的铅垂高.

【结论提炼】:容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=
1 |
2 |
【尝试应用】:
已知:如图3,点A(-5,2)、B(5,0)、C(0,5),则△ABC的水平宽为___,铅垂高为___,所以△ABC的面积为___.
【再探新知】:

三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,小明进行了如下探索尝试:
(1)他首先在图4所示的平面直角坐标系中,取了A(-4,2)、B(1,5)、C(4,1)、D(-1,-4)四个点,得到了四边形ABCD.
小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是___;他又用其它的方法进行了计算,结果是___,由此他发现:用“S=
1 |
2 |

(2)小明并没有放弃尝试,他又在图5所示的平面直角坐标系中,取了A(-5,2)、B(1,5)、C(4,2)、D(-1,-3)四个点,得到了四边形ABCD.小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是___,由此他发现:用“S=
1 |
2 |
(3)小明很奇怪,就继续进行了进一步尝试,他在图6所示的平面直角坐标系中,取了A(-4,2)、B(1,5)、C(5,1)、D(1,-5)四个点,得到了四边形ABCD.通过计算他发现:用“S=
1 |
2 |
通过以上尝试,小明恍然大悟得出结论:当四边形满足___条件时,四边形可以用“S=
1 |
2 |
【学以致用】:
如图7,在平面直角坐标系中,点M坐标为(-2,0),抛物线的解析式为:y=
1 |
4 |

▼优质解答
答案和解析
(1)小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是36;他又用其它的方法进行了计算,结果是37,由此他发现:用“S=
dh”这一方法对图4中的四边形求面积不适合;
(2)小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是36,由此他发现:用“S=
dh”这一方法对图5中的四边形求面积适合;
(3)通过计算他发现:用“S=
dh”这一方法对图6中的四边形求面积适合;
结论:当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=
dh”来求面积.
y=
x2-2x+3的图象与y轴交于点A(0,3),
x2-2x+3=0,解得,x1=,x2=6
与x轴交点B(2,0)、C(6,0),
当P点为抛物线的顶点时,四边形AMPC面积最大,
y=
x2-2x+3=
(x-4)2-1,∴顶点的坐标为(4,-1),
四边形AMPC的水平宽为8,铅垂高为4,
∴四边形AMPC面积为:
×8×4=16.
1 |
2 |
(2)小明运用“水平宽与铅垂高乘积的一半”进行计算的结果是36,由此他发现:用“S=
1 |
2 |
(3)通过计算他发现:用“S=
1 |
2 |
结论:当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=
1 |
2 |
y=
1 |
4 |
1 |
4 |
与x轴交点B(2,0)、C(6,0),
当P点为抛物线的顶点时,四边形AMPC面积最大,
y=
1 |
4 |
1 |
4 |
四边形AMPC的水平宽为8,铅垂高为4,
∴四边形AMPC面积为:
1 |
2 |
看了 对于某些三角形或是四边形,我...的网友还看了以下:
如图所示,A、B两导体板平行放置,在t=0时将电子从A板附近由静止释放(电子的重力忽略不计).分别 2020-04-06 …
“内艰去官,民相率奏留者数四”中的“四”如何理解?出自《明史·李骥传》“四”是阴数,如果“数四”合 2020-04-07 …
表示手的动作有很多,如“拉着手”,请按“X着手”的格式,写出四个表示手的动作词:着手表示手的动作有 2020-06-11 …
如图示AOB为轻质杠杆,B端挂重物G,A端分别作用四个方向力时,杠杆都能在图示位置平衡.则四个力大 2020-06-13 …
此四友,何为?板桥喜交友,曾问禅师:“何为友?”禅师示:“友有四种:一如花,艳时盈怀,萎时丢弃。二 2020-06-25 …
如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥.12,AD,B 2020-07-22 …
如p是呼吸、消化、循环、泌尿系统6功能联系示意p,①~⑥表示生理过程或物质,请据p回答下列问题:( 2020-07-29 …
有一种用6位数表示日期的方法.有一种用6位数字表示日期的方法,例如“910305”表示的是1991年 2020-11-06 …
有一种用6位数字表示日期的方法.有一种用6位数字表示日期的方法,例如“910305”表示的是1991 2020-11-06 …
有一种用六位数字表示日期的方法,如051127表示的是2005年11月27日,也就是从左到右,第一、 2020-12-23 …