早教吧作业答案频道 -->其他-->
问题提出:从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从A走到B共有多少种不同的走法?问题探究:为解决上述实际问题,我们先建立如
题目详情
问题提出:从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从A走到B共有多少种不同的走法?
问题探究:为解决上述实际问题,我们先建立如下数学模型:
用若干个边长都为1的正方形(记为1×1矩形)和若干个边长分别为1和2的矩形(记为1×2矩形),如图1,要拼成一个边长分别为1和n的矩形(记为1×n矩形),如图2,有多少种不同的拼法?(设A1×n表示不同拼法的个数)

为解决上述数学模型问题,我们采取的策略和方法是:一般问题特殊化.
探究一:先从最特殊的情形入手,即要拼成一个1×1矩形,有多少种不同拼法?
显然,只有1种拼法,如图3,即A1×1=1种.
探究二:要拼成一个1×2矩形,有多少种不同拼法?不难看出,有2种拼法,如图4,即A1×2=2种.
探究三:要拼成一个1×3矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图4这2种1×2矩形
上方,各拼上一个1×1矩形,即这类拼法共有A1×2=2种;另一类是在图3这1种1×1矩形上方拼上一个1×2矩形,即这类拼法有A1×1=1种,如图5.即A1×3=A1×2+A1×1=2+1=3(种).
探究四:要拼成一个1×4矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图5这3种1×3矩形上方,各拼上一个1×1矩形,即这类拼法共有A1×3=3种;另一类是在图4这2种1×2矩形上方,各拼上一个1×2矩形,即这类拼法共有A1×2=2种,如图6.即A1×4=A1×3+A1×2=3+2=5(种).
探究五:要拼成一个1×5矩形,有多少种不同拼法A1×5?仿照上述探究过程进行解答,并求出A1×5(不需画图).
探究六:一般的,要拼成一个1×n矩形(n≥3的整数),有A1×n=______ 种不同拼法.(已知A1×(n-1)=a,A1×(n-2)=b,)
问题解决:把“问题提出”中的实际问题,转化为“问题探究”中的数学模型,并进行解答.
问题探究:为解决上述实际问题,我们先建立如下数学模型:
用若干个边长都为1的正方形(记为1×1矩形)和若干个边长分别为1和2的矩形(记为1×2矩形),如图1,要拼成一个边长分别为1和n的矩形(记为1×n矩形),如图2,有多少种不同的拼法?(设A1×n表示不同拼法的个数)

为解决上述数学模型问题,我们采取的策略和方法是:一般问题特殊化.
探究一:先从最特殊的情形入手,即要拼成一个1×1矩形,有多少种不同拼法?
显然,只有1种拼法,如图3,即A1×1=1种.
探究二:要拼成一个1×2矩形,有多少种不同拼法?不难看出,有2种拼法,如图4,即A1×2=2种.
探究三:要拼成一个1×3矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图4这2种1×2矩形
上方,各拼上一个1×1矩形,即这类拼法共有A1×2=2种;另一类是在图3这1种1×1矩形上方拼上一个1×2矩形,即这类拼法有A1×1=1种,如图5.即A1×3=A1×2+A1×1=2+1=3(种).
探究四:要拼成一个1×4矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图5这3种1×3矩形上方,各拼上一个1×1矩形,即这类拼法共有A1×3=3种;另一类是在图4这2种1×2矩形上方,各拼上一个1×2矩形,即这类拼法共有A1×2=2种,如图6.即A1×4=A1×3+A1×2=3+2=5(种).
探究五:要拼成一个1×5矩形,有多少种不同拼法A1×5?仿照上述探究过程进行解答,并求出A1×5(不需画图).
探究六:一般的,要拼成一个1×n矩形(n≥3的整数),有A1×n=______ 种不同拼法.(已知A1×(n-1)=a,A1×(n-2)=b,)
问题解决:把“问题提出”中的实际问题,转化为“问题探究”中的数学模型,并进行解答.
▼优质解答
答案和解析
探究五:∵A1×4=A1×2+A1×3=5,
A1×5=A1×3+A1×4=3+5=8,
∴要拼成一个1×5矩形,有8种不同拼法A1×5,
探究六:一般的,要拼成一个1×n矩形(n≥3的整数),有A1×n=A1×(n-1)+A1×(n-2)=a+b 种不同拼法;
故答案为;a+b;
∵从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶,
∴A1×1=1种,即A1×3=A1×2+A1×1=2+1=3(种),A1×4=A1×3+A1×2=3+2=5(种),A1×5=8(种),
∴A1×6=A1×4+A1×5=5+8=13,A1×7=A1×6+A1×5=13+8=21,
∴A1×8=A1×6+A1×7=13+21=34,
答:从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从A走到B共有34种不同的走法.
A1×5=A1×3+A1×4=3+5=8,
∴要拼成一个1×5矩形,有8种不同拼法A1×5,
探究六:一般的,要拼成一个1×n矩形(n≥3的整数),有A1×n=A1×(n-1)+A1×(n-2)=a+b 种不同拼法;
故答案为;a+b;
∵从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶,
∴A1×1=1种,即A1×3=A1×2+A1×1=2+1=3(种),A1×4=A1×3+A1×2=3+2=5(种),A1×5=8(种),
∴A1×6=A1×4+A1×5=5+8=13,A1×7=A1×6+A1×5=13+8=21,
∴A1×8=A1×6+A1×7=13+21=34,
答:从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从A走到B共有34种不同的走法.
看了 问题提出:从A到B共有8个台...的网友还看了以下:
法的溯及力的问题,是指该项法律公布生效以前所发生的事件或者行为,是否用该项法律的问题,我国一 2020-05-31 …
走一步,再走一步的问题!1.你最喜欢文中的那个人物?为什么?2.你最不喜欢文中的那个人物?为什么? 2020-06-17 …
Doyouhaveanyfurtherquestiontoanswer?你还有更近一步的问题要问吗 2020-06-18 …
关于篮球走步的问题。1、持球后,快速突破时,先跨出一步(另一只不离地)再运球算不算走步?2、以一只 2020-06-20 …
研究方法中的“问题导向”如何译成英文?研究方法中有几对类似的说法:1、问题导向与框架导向(西北工大 2020-07-06 …
关于西班牙语语法上的问题!句子:1Amoamimama(第二个音节是重音).关于西班牙语语法上的问 2020-07-16 …
关于法律的问题政治考卷上判断题:制定法律是由国家立法机关制定的,而认可法律是道德和风俗中被人民认可 2020-07-29 …
关于篮球走步的问题运完球后,是不是可以双手拿球,向前(或向别的方向)双脚跳一步?(貌似叫垫步、)如果 2020-11-03 …
关于化学热力学初步的问题在空气中有一真绝热空箱,体积为V.今在箱上刺一小孔,空气进入箱内,设空气为理 2020-11-15 …
关于英语语法上的问题theyarealivingroom,adiningroom,threebedr 2020-12-12 …