早教吧作业答案频道 -->数学-->
y''+y'=x^2通解求下列微分方程满足所给初始条件的特解y''+2y'+y=cosx,y|x=0=0,y'|x=0=3/2
题目详情
y''+y'=x^2通解 求下列微分方程满足所给初始条件的特解 y''+2y'+y=cosx,y|x=0 =0,y'|x=0 =3/2
▼优质解答
答案和解析
1
y''+y'=x^2
y''+y'=0
特征方程
r^2+r=0
r=0,r=-1
y=C1e^(-x)+C2
设y''+y'=x^2有特解y=ax^3+bx^2+cx
y'=3ax^2+2bx+c
y''=6ax+2b
6ax+2b+3ax^2+2bx+c=x^2
3a=1,2b+6a=0 2b+c=0
a=1/3,b=-1,c=2
特解 y=(1/3)x^3-x^2+2x
y''+y'=x^2通解 y=(1/3)x^2-x^2+2x+C1e^(-x)+C2
2
y''+2y'+y=cosx
y''+2y'+y=0
特征方程r^2+2r+1=0
r=-1
y=C1e^(-x)+Cxe^(-x)
设y''+2y'+y=cosx特解 y=mcosx+nsinx
y'= -msinx+ncosx
y''= -mcosx -nsinx
-mcosx-nsinx-2msinx+2ncosx+mcosx+nsinx=cosx
(-m+2n+m)=1 (-n-2m+n)=0
m=0,n=1/2
y=(1/2)sinx
通解y=C1e^(-x)+Cxe^(-x)+(1/2)sinx
x=0,y=0 C1=0
y'=-C1e^(-x)+Ce^(-x)+Cxe^x+(1/2)cosx x=0,y'=-C1+C+(1/2)=3/2 C=1
特解 y=xe^(-x)+(1/2)sinx
y''+y'=x^2
y''+y'=0
特征方程
r^2+r=0
r=0,r=-1
y=C1e^(-x)+C2
设y''+y'=x^2有特解y=ax^3+bx^2+cx
y'=3ax^2+2bx+c
y''=6ax+2b
6ax+2b+3ax^2+2bx+c=x^2
3a=1,2b+6a=0 2b+c=0
a=1/3,b=-1,c=2
特解 y=(1/3)x^3-x^2+2x
y''+y'=x^2通解 y=(1/3)x^2-x^2+2x+C1e^(-x)+C2
2
y''+2y'+y=cosx
y''+2y'+y=0
特征方程r^2+2r+1=0
r=-1
y=C1e^(-x)+Cxe^(-x)
设y''+2y'+y=cosx特解 y=mcosx+nsinx
y'= -msinx+ncosx
y''= -mcosx -nsinx
-mcosx-nsinx-2msinx+2ncosx+mcosx+nsinx=cosx
(-m+2n+m)=1 (-n-2m+n)=0
m=0,n=1/2
y=(1/2)sinx
通解y=C1e^(-x)+Cxe^(-x)+(1/2)sinx
x=0,y=0 C1=0
y'=-C1e^(-x)+Ce^(-x)+Cxe^x+(1/2)cosx x=0,y'=-C1+C+(1/2)=3/2 C=1
特解 y=xe^(-x)+(1/2)sinx
看了 y''+y'=x^2通解求下...的网友还看了以下:
已知集合P={a,a+d,a+2d},Q={a,aq,aq^2},其中a≠0,且P=Q,求q的值. 2020-05-17 …
关于数学线性规划的问题求满足约束条件{①y+x-2≥0②y-x+1≥0③y≤2时Z=Y/X的最大最 2020-06-06 …
高数微分方程问题求满足初始条件的解xy'+x+sin(x+y)=0,y|(x=π/2)=0(1-c 2020-06-12 …
微分方程(求特解)求微分方程y""+4y"+4y=0满足初始条件y|x=0 =0 x|y=0 =1 2020-06-27 …
求(1-x^2)y''-xy'=0满足初始条件y|(x=0)=0,y'|(x=0)=1的特解. 2020-06-30 …
y''+y'=x^2通解求下列微分方程满足所给初始条件的特解y''+2y'+y=cosx,y|x= 2020-06-30 …
设f(u)有一阶连续偏导数,f(0)=2,且z=xf(y/x)+yf(y/x)满足∂z/∂x+∂z 2020-07-08 …
求微分方程y′′+(y′)²=1满足y=|x=0=0,y′|x=0=0的特解. 2020-07-31 …
设y=y(x)满足y''+4y'+4y=0及初始条件y(0)=0,y'(0)=-4,广义积分∫+∞, 2020-10-30 …
已知二次函数y=ax^2bxc(a,b,c是常数),x与y的部分对应值入下表,则当x满足的条件是__ 2020-12-31 …