早教吧作业答案频道 -->数学-->
如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x
题目详情
如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1,

(Ⅰ)求p的值;
(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.

(Ⅰ)求p的值;
(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.
▼优质解答
答案和解析
(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=-1的距离,
由抛物线定义得,
=1,即p=2;
(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,
∵AF不垂直y轴,
∴设直线AF:x=sy+1(s≠0),
联立
,得y2-4sy-4=0.
y1y2=-4,
∴B(
,-
),
又直线AB的斜率为
,故直线FN的斜率为
,
从而得FN:y=-
(x-1),直线BN:y=-
,
则N(
,-
),
设M(m,0),由A、M、N三点共线,得
=
,
于是m=
=
,得m<0或m>2.
经检验,m<0或m>2满足题意.
∴点M的横坐标的取值范围为(-∞,0)∪(2,+∞).
由抛物线定义得,
| p |
| 2 |
(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,
∵AF不垂直y轴,
∴设直线AF:x=sy+1(s≠0),
联立
|
y1y2=-4,
∴B(
| 1 |
| t2 |
| 2 |
| t |
又直线AB的斜率为
| 2t |
| t2-1 |
| t2-1 |
| 2t |
从而得FN:y=-
| t2-1 |
| 2t |
| 2 |
| t |
则N(
| t2+3 |
| t2-1 |
| 2 |
| t |
设M(m,0),由A、M、N三点共线,得
| 2t |
| t2-m |
2t+
| ||
t2-
|
于是m=
| 2t2 |
| t2-1 |
| 2 | ||
1-
|
经检验,m<0或m>2满足题意.
∴点M的横坐标的取值范围为(-∞,0)∪(2,+∞).
看了 如图,设抛物线y2=2px(...的网友还看了以下:
力学的题重力为20N的物体放在水平面上,用水平轻绳跨过物体上的光滑滑轮拉物体,若水平拉力F为4N时 2020-05-13 …
设抛物线y^2=2px(p>0)的焦点F,准线L,A.B是抛物线上不同的两点(1)若OA⊥OB(O 2020-05-13 …
求双曲线的离心率的选择题求解.已知双曲线C1:X^2/a^2-y^2/b^2=10,b>0>于抛物 2020-06-03 …
已知抛物线C:y2=4x的焦点为F.(1)若点F是线段AP中点,当点A在抛物线C上运动时,求动点P 2020-06-12 …
扁桃酸衍生物是重要的医药中间体,以A和B为原料合成扁桃酸衍生物F路线如下:(1)A的分子式为C2H 2020-07-13 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线 2020-07-31 …
(1/2)设抛物线C:x^2=2py的焦点为F,准线为l,A为C上一点,已知F为圆心,FA为半径的圆 2020-11-27 …
扁桃酸衍生物是重要的医药中间体,以A和B为原料合成扁桃酸衍生物F路线如图:(1)A的分子式为C2H2 2020-12-14 …
扁桃酸衍生物是重要的医药中间体,以A和B为原料合成扁桃酸衍生物F路线如下:(1)根据流程图分析出G的 2020-12-14 …