早教吧作业答案频道 -->数学-->
已知函数f(x)=√3sin(wx+φ)+cos(wx+φ)(|φ|0)的最小正周期为π,且f(-x)=f(x)则下列关于g(x)=sin(wx+φ)的图像说法正确的是()A.关于点(π/6,0)对称 B.关于直线x=π\12C.在x∈[0,π/6]上,函数值域为[0,1] D.函数
题目详情
已知函数f(x)=√3sin(wx+φ)+cos(wx+φ)(|φ|0)的最小正周期为π,且f(-x)=f(x)
则下列关于g(x)=sin(wx+φ)的图像说法正确的是()
A.关于点(π/6,0)对称 B.关于直线x=π\12
C.在x∈[0,π/6]上,函数值域为[0,1] D.函数在x∈[-π/4,π/3]上单调递增
希望有每个选项的解法,
则下列关于g(x)=sin(wx+φ)的图像说法正确的是()
A.关于点(π/6,0)对称 B.关于直线x=π\12
C.在x∈[0,π/6]上,函数值域为[0,1] D.函数在x∈[-π/4,π/3]上单调递增
希望有每个选项的解法,
▼优质解答
答案和解析
已知函数f(x)=√3sin(wx+φ)+cos(wx+φ)(|φ|0)的最小正周期为π,且f(-x)=f(x),则下列关于g(x)=sin(wx+φ)的图像说法正确的是()
A.关于点(π/6,0)对称B.关于直线x=π\12
C.在x∈[0,π/6]上,函数值域为[0,1]D.函数在x∈[-π/4,π/3]上单调递增
解析:∵函数f(x)=√3sin(wx+φ)+cos(wx+φ)(|φ|0)的最小正周期为π,且f(-x)=f(x)
∴f(x)=√3sin(wx+φ)+cos(wx+φ)=2sin(wx+φ+π/6)
∴f(x)=2sin(2x+φ+π/6)
∵f(-x)=f(x)
∴φ+π/6=π/2==>φ=π/3===>f(x)=2cos(2x)
∴g(x)=sin(2x+π/3)
g(π/6)=sin(π/3+π/3)=√3/2≠0==>A错
2x+π/3=π/2==>2x=π/6==>x=π/12==>B正确
A.关于点(π/6,0)对称B.关于直线x=π\12
C.在x∈[0,π/6]上,函数值域为[0,1]D.函数在x∈[-π/4,π/3]上单调递增
解析:∵函数f(x)=√3sin(wx+φ)+cos(wx+φ)(|φ|0)的最小正周期为π,且f(-x)=f(x)
∴f(x)=√3sin(wx+φ)+cos(wx+φ)=2sin(wx+φ+π/6)
∴f(x)=2sin(2x+φ+π/6)
∵f(-x)=f(x)
∴φ+π/6=π/2==>φ=π/3===>f(x)=2cos(2x)
∴g(x)=sin(2x+π/3)
g(π/6)=sin(π/3+π/3)=√3/2≠0==>A错
2x+π/3=π/2==>2x=π/6==>x=π/12==>B正确
看了 已知函数f(x)=√3sin...的网友还看了以下:
二次函数离散点问题,不是高手不要来已知关于正整数n的二次式y=n平方+an(a为实常数),若当且仅 2020-05-13 …
已知关于正整数n的二次函数y=n^2+an(a为实常数).若当且仅当n=5时,y有最小值,则实数a 2020-05-20 …
知关于正整数n的二次式y=n平方+an(a为实常数),若当且仅当n=5时,y有最小值,则实数a的取 2020-05-20 …
初三数学题!求解谢谢啦要有过程啦谢谢!1、已知关于x的方程(m-1)x²-(m-2)x-2m=0. 2020-05-22 …
已知关于x的二次方程x^2-2(a+1)x+a-1=0已知关于x的二次方程x^2-2(a+1)x+ 2020-05-23 …
关于不等式难度不大的~但我还是不会(1)在方程组x+y=a2x-y=6中,已知x>0,y<0,求a 2020-06-13 …
已知ω>0,正弦函数f(x)=sin(ωx+π/4)在区间(π/2,π)上单调递减,求ω的取值范围 2020-07-16 …
已知a是正整数,如果关于X的方程已知a是正整数,如果关于x的方程x3+(a+17)x2+(38-a 2020-07-17 …
已知关于x的一元二次方程2x平方+4x+k-1=0有实数根,k为正整数,求k的知已知关于x的一元二 2020-07-18 …
已知集合A={0,1}B={x丨x∈A}则A与B的关系正确的是已知集合A={0,1}B={x丨x∈ 2020-07-26 …