早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)*f(b) 1)证明对任意的x∈R,恒有f(x)>0 2)判断函数y=f(x)的单调性 小妹拜谢!

题目详情
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)*f(b)
1)证明对任意的x∈R,恒有f(x)>0
2)判断函数y=f(x)的单调性
小妹拜谢!
▼优质解答
答案和解析
(1)f(a+b)=f(a)*f(b),则
f(0+0)=f(0)^2
又f(0)≠0,则
f(0)=1
当x0 ,则
f(a+b)>0
若f(x)0与f(a+b)0
(2)令b=-a,且a>0,则
f(a)*f(-a)=1
又当x>0时,f(x)>1,则
f(a)>1,0