早教吧作业答案频道 -->数学-->
有答案就是有个地方不懂 设二次函数f(x)=ax^2+bx+c在区 间[-2,2]上的最大值、最小值分别是M、m,集合A={f(x)=x},若A={2},且a≥1,记g(a)=M+m,求g(a)的最小值.有题意可知 方ax^2+(b-1)x+c=0有两相等实根X=2
题目详情
有答案就是有个地方不懂
设二次函数f(x)=ax^2+bx+c在区 间[-2,2]上的最大值、最小值分别是M、m,集合A={f(x)=x},若A={2},且a≥1,记g(a)=M+m,求g(a)的最小值.
有题意可知 方ax^2+(b-1)x+c=0有两相等实根X=2
由伟达定理得b=1-4a,c=4a
所以f(x)=ax^2+(1-4a)x+4a,x∈【-2,2】
抛物线对称轴为x=(4a-1)/2a=2-1/2a
又因为a≥1故3/2≤2-1/2a
设二次函数f(x)=ax^2+bx+c在区 间[-2,2]上的最大值、最小值分别是M、m,集合A={f(x)=x},若A={2},且a≥1,记g(a)=M+m,求g(a)的最小值.
有题意可知 方ax^2+(b-1)x+c=0有两相等实根X=2
由伟达定理得b=1-4a,c=4a
所以f(x)=ax^2+(1-4a)x+4a,x∈【-2,2】
抛物线对称轴为x=(4a-1)/2a=2-1/2a
又因为a≥1故3/2≤2-1/2a
▼优质解答
答案和解析
1.因为a>0,所以1/2a>0,所以2-1/2a>2-0=2,因为要比较x=2和x=-2时函数值的大小,所以要给对称轴限定在一个范围里,而已知条件只说a≥1,所以,可以用显而易见的隐含条件来限定对称轴的范围,即a>0
2.按函数图像想,这个函数f(x),a>0,所以开口向上,定义域x∈【-2,2】 ,对称轴在[3/2,2)上,则对称轴处的f(x)最小(开口向上),对称轴更靠近边缘
x=2,所以f(-2)>f(2),所以f(x)最大值是f(-2)
2.按函数图像想,这个函数f(x),a>0,所以开口向上,定义域x∈【-2,2】 ,对称轴在[3/2,2)上,则对称轴处的f(x)最小(开口向上),对称轴更靠近边缘
x=2,所以f(-2)>f(2),所以f(x)最大值是f(-2)
看了 有答案就是有个地方不懂 设二...的网友还看了以下:
已知函数f(x)=loga^(x+b/x-b) (1)求函数f(x)的定义域和值域(2)判断函数的 2020-04-05 …
matlab solve函数求解a='x=0.5*9.8*0.6^2/pi*tanh(2*pi*0 2020-05-16 …
函数f(x)=a^|x-b|(a>0,且a≠1)的图像关于直线X=b对称函数f(x)=a|x-b| 2020-05-22 …
若x^2+ax+b=0与x^2+cx+d=0有一公共根,那么能否有以下结论:(a+c)x+(b+d 2020-07-09 …
已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B.(1)求A∩B;(2)若 2020-07-21 …
已知首项系数不相等的两个方程:(a-1)x-(a+2)x+(a+2a)=0(b-1)x-(b+2) 2020-07-27 …
求A中所有元素之和求具体过程,1.设A={x|x^2+(b+2)x+b+1=0,b属于R},求求A 2020-08-01 …
已知关于x的不等式ax2-3x+2>0的解集为{x|x<1或x>b}(1)求a,b的值;(2)解关于 2020-11-11 …
问一题等差数列题若关于x的方程X的平方-X+a=0和x的平方-x+b=0(a不等于b)的四个根可组成 2020-11-18 …
若命题p:不等式ax+b>0的解集为x>-b/a.命题q:关于x的不等式(x-a)(x-b)<0的解 2020-12-07 …