早教吧作业答案频道 -->数学-->
在三角形ABC中角ACB为90度,AC=BC,AD是DC边中线CE垂直AD于E,CE的延长线交AB于F求(1)AE比DE的值(2)tan角BAD的值
题目详情
在三角形ABC中角ACB为90度,AC=BC,AD是DC边中线CE垂直AD于E,CE的延长线交AB于F
求(1)AE比DE的值(2)tan角BAD的值
求(1)AE比DE的值(2)tan角BAD的值
▼优质解答
答案和解析
第一个问题:
方法一
∵AC⊥CD、CE⊥AD,∴∠CAE=∠DCE.[同是∠ADC的余角]
∴△ACE∽△CDE,∴△ACE的面积/△CDE的面积=(AC/AD)^2.
又AC=BC、CD=BC/2,∴AC=2CD,∴△ACE的面积/△CDE的面积=4.
∵△ACE的面积=(1/2)AE×CE、△CDE的面积=(1/2)DE×CE,∴AE/DE=4.
方法二
∵△ACE、△CDE是等高三角形,∴△ACE的面积/△CDE的面积=AE/DE.
∵△ACE的面积=(1/2)AC×CEsin∠ACE、△CDE的面积=(1/2)CD×CEsin∠DCE,
∴(ACsin∠ACE)/(CDsin∠DCE)=AE/DE.
∵AC=BC、CD=BC/2,∴AC=2CD,∴2sin∠ACE/sin∠DCE=AE/DE.
而∠ACE+∠DCE=90°、∠ACE+∠CAD=90°,
∴sin∠DCE=cos∠ACE=sin∠CAD、sin∠ACE=cos∠CAD,
∴2cos∠CAD/sin∠CAD=AE/DE,∴2tan∠CAD=AE/DE,∴2AC/CD=AE/DE,∴AE/DE=4.
第二个问题:
方法一
过B作BG⊥AD交AD的延长线于G.
∵∠CED=∠BGD=90°、∠CDE=∠BDG、CD=BD,∴△CDE≌△BDG,
∴CE=BG、DE=DG.
∵AE/DE=4,∴AE=4DE,∴AG=AE+DE+DG=4DE+DE+DE=6DE.
∵CE^2=AE×DE=4DE×DE,∴CE=2DE,∴BG=2DE.
∴tan∠BAD=BG/AG=2DE/(6DE)=1/3.
方法二
∵AC=BC、∠ACB=90°,∴∠BAC=45°,∴tan∠BAC=1,又tan∠CAD=CD/AC=1/2,
∴tan∠BAD=tan(∠BAC-∠CAD)
=(tan∠BAC-tan∠CAD)/(1+tan∠BACtan∠CAD)=(1-1/2)/(1+1/2)=1/3.
方法一
∵AC⊥CD、CE⊥AD,∴∠CAE=∠DCE.[同是∠ADC的余角]
∴△ACE∽△CDE,∴△ACE的面积/△CDE的面积=(AC/AD)^2.
又AC=BC、CD=BC/2,∴AC=2CD,∴△ACE的面积/△CDE的面积=4.
∵△ACE的面积=(1/2)AE×CE、△CDE的面积=(1/2)DE×CE,∴AE/DE=4.
方法二
∵△ACE、△CDE是等高三角形,∴△ACE的面积/△CDE的面积=AE/DE.
∵△ACE的面积=(1/2)AC×CEsin∠ACE、△CDE的面积=(1/2)CD×CEsin∠DCE,
∴(ACsin∠ACE)/(CDsin∠DCE)=AE/DE.
∵AC=BC、CD=BC/2,∴AC=2CD,∴2sin∠ACE/sin∠DCE=AE/DE.
而∠ACE+∠DCE=90°、∠ACE+∠CAD=90°,
∴sin∠DCE=cos∠ACE=sin∠CAD、sin∠ACE=cos∠CAD,
∴2cos∠CAD/sin∠CAD=AE/DE,∴2tan∠CAD=AE/DE,∴2AC/CD=AE/DE,∴AE/DE=4.
第二个问题:
方法一
过B作BG⊥AD交AD的延长线于G.
∵∠CED=∠BGD=90°、∠CDE=∠BDG、CD=BD,∴△CDE≌△BDG,
∴CE=BG、DE=DG.
∵AE/DE=4,∴AE=4DE,∴AG=AE+DE+DG=4DE+DE+DE=6DE.
∵CE^2=AE×DE=4DE×DE,∴CE=2DE,∴BG=2DE.
∴tan∠BAD=BG/AG=2DE/(6DE)=1/3.
方法二
∵AC=BC、∠ACB=90°,∴∠BAC=45°,∴tan∠BAC=1,又tan∠CAD=CD/AC=1/2,
∴tan∠BAD=tan(∠BAC-∠CAD)
=(tan∠BAC-tan∠CAD)/(1+tan∠BACtan∠CAD)=(1-1/2)/(1+1/2)=1/3.
看了 在三角形ABC中角ACB为9...的网友还看了以下:
说法正确是{ }(并且告诉我为什么) A 延长直线AB到C .B 延长射线OA到C. C 延长线段 2020-04-06 …
的延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线A 2020-04-27 …
下列说法,正确的有:A 延长直线AB B 延长线段BC C 延长射线OA D 画直线 在射线AB上 2020-05-15 …
下列作图,仅用尺规作图可以做出的是().①延长直线AB②取线段AB的中点C③以O为圆新作弧④已知∠ 2020-06-05 …
(2007•静安区二模)如图,线段AB=1,点C在线段AB上,以AC为半径的⊙A与以CB为半径的⊙ 2020-06-15 …
一个高中数学问题过双曲线X^2/a^2-y^2/b^2=1的左焦点F(-c,0),做圆O:X^2+ 2020-07-31 …
高2数学`````````设一般式线段1:AX+BX+C=0线段2:aX+bX+c=0证明两线段平 2020-08-01 …
如图,在平面直角坐标系中,点A、B、C、E、P均在坐标轴上,A(0,3)、B(-4,0)、P(0, 2020-08-03 …
过双曲线x2a2-y2b2=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=a2 2020-10-31 …
已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=3π4,求△A 2020-10-31 …