早教吧作业答案频道 -->数学-->
1椭圆的两个焦点为F1(-1,0),F2(1,0),|F1F2|是|PF1|和|PF2|的等差中项.∠F2F1P=120°,求△PF1F2的面积(1)求椭圆方程(2)若∠F2F1P=120°,求△PF1F2的面积2.已知双曲线x^-y^/2=1,与点P(1,2),过P
题目详情
1椭圆的两个焦点为F1(-1,0),F2(1,0),|F1F2|是|PF1|和|PF2|的等差中项.∠F2F1P=120°,求△PF1F2的面积
(1)求椭圆方程
(2)若∠F2F1P=120°,求△PF1F2的面积
2.已知双曲线x^-y^/2=1,与点P(1,2),过P点作直线l与双曲线交于A,B两点,若P为AB中点.
(1)求直线AB的方程;
(2)若Q点坐标为(1,1),证明不存在以Q中点的弦.
第一题不对能把第一题的给分
(1)求椭圆方程
(2)若∠F2F1P=120°,求△PF1F2的面积
2.已知双曲线x^-y^/2=1,与点P(1,2),过P点作直线l与双曲线交于A,B两点,若P为AB中点.
(1)求直线AB的方程;
(2)若Q点坐标为(1,1),证明不存在以Q中点的弦.
第一题不对能把第一题的给分
▼优质解答
答案和解析
1.(1)设椭圆方程X^2/a+Y^2/b=1 (a>b>0) 设半焦距为c
由已知得c=1
|F1F2|是|PF1|和|PF2|的等差中项
==>(推出) |F1F2|=2c=2=|PF1|+|PF2|=2a (此处P应在椭圆上,不知是不是你忘打了)
==> a=2 由 c^2=a^2-b^2 ==> b^2=3
所以椭圆方程为 x^2/4+y^2/3=1
(2) 设|F1P|=x 则|PF2|=4-x
由余弦定理得 [2^2+x^2-(4-x)^2] / (2×2×x)=cos120°=-0.5
==> x=2
所以 面积S=0.5×|F1F2|×|F1P|×sin120°=根号3
2.(1)设直线AB方程 y-2=k(x-1)
由已知,k必存在
k=0时,显然不成立
k≠0时 将直线方程与双曲线方程联立,消y,得
(2-k^2)x^2-2k(2-k)x-(2-k)^2-2=0 (关于x的一元二次方程)
设A(x1,y1) B(x2,y2)
则 x1+x2=-[-2k(2-k)]/(2-k^2)
P为AB中点 所以 (x1+x2)/2=1 推出k=1
所以直线方程为 y=x+1
(2) 方法同(1),将k换成k’与(1)区分开
设过Q的直线y-1=k(x-1) 与双曲线联立,消y得
(2-k^2)x^2-2k(1-k)x-(1-k)^2-2=0 (为方便,我就不区分了)
Δ=[-2k(1-k)]^2-4×(2-k^2)×[-(1-k)^2-2]>0
推出 k<1.5
设直线与双曲线焦点为(x3,y3) B(x4,y4)
则 x3+x4=-[-2k(1-k)]/(2-k^2)
QP为AB中点 所以 (x3+x4)/2=1 推出k=2>1.5 舍去
所以不存在这样的k,即不存在以Q中点的弦
由已知得c=1
|F1F2|是|PF1|和|PF2|的等差中项
==>(推出) |F1F2|=2c=2=|PF1|+|PF2|=2a (此处P应在椭圆上,不知是不是你忘打了)
==> a=2 由 c^2=a^2-b^2 ==> b^2=3
所以椭圆方程为 x^2/4+y^2/3=1
(2) 设|F1P|=x 则|PF2|=4-x
由余弦定理得 [2^2+x^2-(4-x)^2] / (2×2×x)=cos120°=-0.5
==> x=2
所以 面积S=0.5×|F1F2|×|F1P|×sin120°=根号3
2.(1)设直线AB方程 y-2=k(x-1)
由已知,k必存在
k=0时,显然不成立
k≠0时 将直线方程与双曲线方程联立,消y,得
(2-k^2)x^2-2k(2-k)x-(2-k)^2-2=0 (关于x的一元二次方程)
设A(x1,y1) B(x2,y2)
则 x1+x2=-[-2k(2-k)]/(2-k^2)
P为AB中点 所以 (x1+x2)/2=1 推出k=1
所以直线方程为 y=x+1
(2) 方法同(1),将k换成k’与(1)区分开
设过Q的直线y-1=k(x-1) 与双曲线联立,消y得
(2-k^2)x^2-2k(1-k)x-(1-k)^2-2=0 (为方便,我就不区分了)
Δ=[-2k(1-k)]^2-4×(2-k^2)×[-(1-k)^2-2]>0
推出 k<1.5
设直线与双曲线焦点为(x3,y3) B(x4,y4)
则 x3+x4=-[-2k(1-k)]/(2-k^2)
QP为AB中点 所以 (x3+x4)/2=1 推出k=2>1.5 舍去
所以不存在这样的k,即不存在以Q中点的弦
看了 1椭圆的两个焦点为F1(-1...的网友还看了以下:
[2013·天津高考]已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0) 2020-04-08 …
直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的焦点为椭圆的焦 2020-05-15 …
已知p:|1-(x-1)/3|≤2,q:x^2-2x+1-m^2≤0(m>0),(1)若p是q的充 2020-07-18 …
已知点P(-2,-3)和以Q为圆心的圆(x-4)^2+(y-2)^2=91.求过P点的圆Q的直切线 2020-07-26 …
(2014•天津)如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=2,AD=2,P 2020-07-29 …
在△ABC中,向量OA=a,向量OB=b,设向量OP=p.若p=t(a/|a|+b/|b|),t∈ 2020-08-01 …
已知命题p:若a>1,则ax>logax恒成立;命题q:等差数列{an}中,m+n=p+q是an+ 2020-08-01 …
关于功率公式P=W/t和P=Fv的说法正确的是()A.由P=W/t知,只要知道W和t就可以求出任意 2020-08-02 …
已知命题P:“若|a|=|b|,则a=b”,则命题P及其逆命题、否命题、逆否命题中,正确命题的个数是 2020-11-02 …
电子技术基础题功率参考方向当电压U和电流I采用关联参考方向时,有P=UI,若P>0时吸收功率P0时不 2020-11-05 …