早教吧作业答案频道 -->数学-->
1.已知矩形纸片ABCD的边AB=3,BC=4,点M是边CD上的一个动点,(不与点C重合);把这张矩形纸片折叠,是点B落在点M的位置上,折痕交边AD于点E,交边BC于点F;(1)若CM=1,求BF的长(2)试判断角BEM是否可能等于90度,
题目详情
1.已知矩形纸片ABCD的边AB=3,BC=4,点M是边CD上的一个动点,(不与点C重合);把这张矩形纸片折叠,是点B落在点M的位置上,折痕交边AD于点E,交边BC于点F;(1)若CM=1,求BF的长(2)试判断角BEM是否可能等于90度,如果可能,求此时CM的长
2.梯形ABCD中,ADBCABBC点P从A出发以1cm/s的速度沿AD移动,点Q同时从C出发以2cm/s的速度沿CB移动.若AB=18cm,BC=24cm,(1)运动多少时间后四边形ABQP是矩形?
(2)运动多少时间后四边形DCQP是等腰梯形?(3)运动多少时间后四边形DCQP的面积最大
2.梯形ABCD中,ADBCABBC点P从A出发以1cm/s的速度沿AD移动,点Q同时从C出发以2cm/s的速度沿CB移动.若AB=18cm,BC=24cm,(1)运动多少时间后四边形ABQP是矩形?
(2)运动多少时间后四边形DCQP是等腰梯形?(3)运动多少时间后四边形DCQP的面积最大
▼优质解答
答案和解析
1.(1)设BF长为a,由于对叠的时候点B、M重合,则线段BF和FM必定重合,故FM=BF=a,而FC=BC-BF=4-a,则在直角三角形FCM中,由勾股定理,FM[2]=FC[2]+CM[2],即a[2]=(4-a)[2]+1[2],解方程得:a=2.125
此处以[2]表示平方
(2)假设BEM等于90度,则设CM长为a,由于B、M对叠,则EM、EB重合,
即EM=EB,而角DEM+角BEA=180-角MEB=180-90=90,而在直角三角形MDE和直角三角形EAB中,角DEM+角EMD=90,所以角EMD=角BEA,加之EM=EB,所以三角形MDE全等于三角形EAB,所以DE=AB=3,EA=MD=CD-CM=3-a,由AD=DE+EA,
即4=3+3-a,得a=2.故角BEM可能等于90度,此时CM长为2
2.(1)设运动时间a秒后ABQP是矩形,则此时BQ=AP=1×a,CQ=2×a,由BC=BQ+CQ,
故得到24=1×a+2×a,解得a=8(秒)
(2)(3)两问似乎还需要知道AD长度,不知原题中是否给出了
此处以[2]表示平方
(2)假设BEM等于90度,则设CM长为a,由于B、M对叠,则EM、EB重合,
即EM=EB,而角DEM+角BEA=180-角MEB=180-90=90,而在直角三角形MDE和直角三角形EAB中,角DEM+角EMD=90,所以角EMD=角BEA,加之EM=EB,所以三角形MDE全等于三角形EAB,所以DE=AB=3,EA=MD=CD-CM=3-a,由AD=DE+EA,
即4=3+3-a,得a=2.故角BEM可能等于90度,此时CM长为2
2.(1)设运动时间a秒后ABQP是矩形,则此时BQ=AP=1×a,CQ=2×a,由BC=BQ+CQ,
故得到24=1×a+2×a,解得a=8(秒)
(2)(3)两问似乎还需要知道AD长度,不知原题中是否给出了
看了 1.已知矩形纸片ABCD的边...的网友还看了以下:
就M的不同取值,指出方程(m-1)x^2+(3-m)y^2=(m-1)(3-m)所表示的曲线的形状 2020-05-13 …
已知A(3,-4) B(6,-3) C(5-m,-3-m) ①若A B已知A(3,-4) B(6, 2020-05-16 …
(2007•晋江市质检)如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时 2020-05-17 …
已知,点A、B分别是X轴、Y轴上的动点,点C、D是反比例函数y=k/x(k大于0)图像上的点,其中 2020-05-17 …
如图,矩形ABCD中,AD=3厘米,AB=4厘米,N为BC上一点,BN=1厘米,动点M从B点出发, 2020-06-04 …
在梯形ABCD中,AD平行BC,AD=3,DC=5,BC=10,梯形的高为4,动点M从B点出发沿线 2020-06-27 …
如图,P是圆x2+y2=4上的动点,P点在x轴上的投影是D,点M满足DM=12DP.(1)求动点M 2020-07-20 …
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0),(4,3),动点M 2020-07-22 …
如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP 2020-07-30 …
如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方 2021-01-13 …