早教吧作业答案频道 -->其他-->
已知奇函数f(x)的定义域为[-1,1],当x∈[-1,0)时,f(x)=-(12)x.(1)求函数f(x)在[0,1]上的值域;(2)若x∈(0,1],14f2(x)-λ2f(x)+1的最小值为-2,求实数λ的值.
题目详情
已知奇函数f(x)的定义域为[-1,1],当x∈[-1,0)时,f(x)=-(
)x.
(1)求函数f(x)在[0,1]上的值域;
(2)若x∈(0,1],
f2(x)-
f(x)+1的最小值为-2,求实数λ的值.
1 |
2 |
(1)求函数f(x)在[0,1]上的值域;
(2)若x∈(0,1],
1 |
4 |
λ |
2 |
▼优质解答
答案和解析
(1)设x∈(0,1],则-x∈[-1,0)时,所以f(-x)=-(
)−x=-2x.
又因为f(x)为奇函数,所以有f(-x)=-f(x),
所以当x∈(0,1]时,f(x)=-f(-x)=2x,所以f(x)∈(1,2],
又f(0)=0.
所以,当x∈[0,1]时函数f(x)的值域为(1,2]∪{0}.
(2)由(1)知当x∈(0,1]时,f(x)∈(1,2],
所以
f(x)∈(
,1].
令t=
f(x),则
<t≤1,
g(t)=
f2(x)-
f(x)+1=t2-λt+1=(t−
)2+1-
,
①当
≤
,即λ≤1时,g(t)>g(
),无最小值,
②当
<
≤1,即1<λ≤2时,g(t)min=g(
)=1-
=-2,
解得λ=±2
(舍去).
③当
>1,即λ>2时,g(t)min=g(1)=-2,解得λ=4,
综上所述,λ=4.
1 |
2 |
又因为f(x)为奇函数,所以有f(-x)=-f(x),
所以当x∈(0,1]时,f(x)=-f(-x)=2x,所以f(x)∈(1,2],
又f(0)=0.
所以,当x∈[0,1]时函数f(x)的值域为(1,2]∪{0}.
(2)由(1)知当x∈(0,1]时,f(x)∈(1,2],
所以
1 |
2 |
1 |
2 |
令t=
1 |
2 |
1 |
2 |
g(t)=
1 |
4 |
λ |
2 |
λ |
2 |
λ2 |
4 |
①当
λ |
2 |
1 |
2 |
1 |
2 |
②当
1 |
2 |
λ |
2 |
λ |
2 |
λ2 |
4 |
解得λ=±2
3 |
③当
λ |
2 |
综上所述,λ=4.
看了 已知奇函数f(x)的定义域为...的网友还看了以下:
计算:(1)0.54×0.44×12.541.254;(2)tm+1•t+(-t)2•tm(m是整 2020-04-07 …
除(1)外,用适当的方法解下列方程(1)x2+3x-4=0(配方法)(2)(x-4)2=5(4-x 2020-05-12 …
你能用1、5、6、0这四个数字按下列要求组成不同的三位数乘一位数的乘法算式吗?(1)积的末尾没有0 2020-05-13 …
你能用1、5、6、0这四个数字按下列要求组成不同的三位数乘一位数的乘法算式吗?(1)积的末尾没有0 2020-05-13 …
下列结论:①若关于x的方程ax+b=0(a≠0)的解是x=1,则a+b=0;②若b=2a,则关于x 2020-05-13 …
阅读下面的例题:解方程:x2+|x|-2=0.解:原方程可化为:|x|2+|x|-2=0即:(|x 2020-05-13 …
比如说1.0CM=0.010M精确度不受影响如果我要写成1.0乘以十的负2次方米精确度受影响么?W 2020-05-14 …
(2012•济南二模)设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若┐p是 2020-05-14 …
用简便方法计算4.0×0.292.33×0.9×41.2×2.9+0.0×2.93.0÷1.29÷ 2020-05-15 …
sinx+cosx>m,s(x):x2+mx+1>0.如果对∀x∈R,r(x)假命题,r(x):s 2020-05-21 …