早教吧作业答案频道 -->数学-->
在△ABC中,AD是中线,O为AD的中点,直线a过点O,过A、B、C三点分别作直线a的垂线,垂足分别为G、E、F,当直线a绕点O旋转到与AD垂直时(如图1),易证:BE+CF=2AG,当直线a绕点O旋转到与AD不
题目详情
在△ABC中,AD是中线,O为AD的中点,直线a过点O,过A、B、C三点分别作直线a的垂线,垂足分别为G、E、F,当直线a绕点O旋转到与AD垂直时(如图1),易证:BE+CF=2AG,
当直线a绕点O旋转到与AD不垂直时,在图2、图3两种情况下,线段BE、CF、AG又有怎样的数量关系?请写出你的猜想,并对图3的猜想给予证明.


当直线a绕点O旋转到与AD不垂直时,在图2、图3两种情况下,线段BE、CF、AG又有怎样的数量关系?请写出你的猜想,并对图3的猜想给予证明.


▼优质解答
答案和解析
(1)猜想结果:图2结论为BE+CF=2AG,
图3结论为BE-CF=2AG.
(2)证明:连接CE,过D作DQ⊥l,垂足为Q,交CE于H(图4),
∵∠AGO=∠DQO=90°,∠AOG=∠DOQ(对顶角相等),且O为AD的中点即AO=DO,
∴△AOG≌△DOQ(AAS),即AG=DQ,
∵BE∥DH∥FC,BD=DC,
∴CH:EH=CD:BD=FQ:EQ,
∴QH是三角形EFC的中位线,
∴BE=2DH,CF=2QH,
∴BE-CF=2(DQ+QH)-2QH=2DQ=2AG.

图3结论为BE-CF=2AG.
(2)证明:连接CE,过D作DQ⊥l,垂足为Q,交CE于H(图4),
∵∠AGO=∠DQO=90°,∠AOG=∠DOQ(对顶角相等),且O为AD的中点即AO=DO,
∴△AOG≌△DOQ(AAS),即AG=DQ,
∵BE∥DH∥FC,BD=DC,
∴CH:EH=CD:BD=FQ:EQ,
∴QH是三角形EFC的中位线,
∴BE=2DH,CF=2QH,
∴BE-CF=2(DQ+QH)-2QH=2DQ=2AG.
看了 在△ABC中,AD是中线,O...的网友还看了以下:
英语数学(分式)(1111:26:51)已知非零实数abc满足a^2+b^2+c^2=1,且a(1 2020-05-15 …
1.若a+b+c=0,化简:a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+32 2020-05-17 …
实数a,b,c都不为0,且a+b+c=0,则a(1/b+1/c)+b(1/c+1/a)+c(1/a 2020-06-16 …
已知方程x2+bx+c=0及x2+cx+b=0分别各有两个整数根且两根均同号,求证:b-1≤c≤b 2020-07-30 …
关于分式初二.1)已知1/x+1/y=8,求(2x-3xy+2y)/(x+2xy+y)的值.2)已 2020-07-30 …
已知方程x^2+bx+c=0及x^2+cx+b=0分别各有两个整数根x1y1及x2y2且x1y1> 2020-08-02 …
已知非零实数a.b.c满足a^2+b^2+c^2=1,且a(1/b=1/c)+b(1/c+1/a)+ 2020-12-07 …
1.已知1/x+1/y=1/x+y,求y/x+x/y2.已知非零实数abc满足a^+b^+c^=1, 2020-12-07 …
质数的平方仍是质数吗?已知a,b,c分别是直角三角形的三边,c是斜边,a,b,c是正整数,且a是质数 2020-12-09 …
已知a,b,c都是有理数,满足:a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)=- 2020-12-31 …