早教吧作业答案频道 -->其他-->
如图,ABCD是矩形,把矩形沿直线AC折叠,点B落在E处,连接DE,从E作EH⊥AC交AC于H.(1)判断四边形ACED是什么图形,并加以证明;(2)若AB=8,AD=6,求DE的长;(3)四边形ACED中,比较AE+EC与AC
题目详情

(1)判断四边形ACED是什么图形,并加以证明;
(2)若AB=8,AD=6,求DE的长;
(3)四边形ACED中,比较AE+EC与AC+EH的大小并说明理由.
▼优质解答
答案和解析
(1)四边形ACED是等腰梯形.
理由:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,CD∥AB,AD∥BC,∠B=∠DAB=90°.
∴∠ACD=∠CAB.∠DAC=∠BCA,
∵△ACE与△ACB关于AC对称,
∴△ACE≌△ACB,
∴AE=AB=CD,CE=CB=AD,∠EAC=∠BAC,∠ACE=∠ACB,∠AEC=∠B=90°,
∴∠ACD=∠EAC.∠ACE=∠DAC,
∴∠ACE-∠ACD=∠DAC-∠EAC,
∴∠ECD=∠DAE.
在△ECD和△DAE中,
,
∴△ECD≌△DAE,
∴∠CDE=∠AED.
∵∠CDE+∠ADE=∠EAC+∠DCA,
∴2∠CDE=2∠ACD,
∴∠CDE=∠ACD,
∴DE∥AC,
∵AD=CE,
∴四边形ACED是等腰梯形.
(2)作DQ⊥AC于Q,DQ=
∴∠DQH=∠DQA=90°.
∵EH⊥AC,
∴∠EHC=∠EHA=90°.
∵DE∥AC,
∴∠EDQ=∠AQD=90°,
∴∠EDQ=∠DQH=∠EHQ=90°,
∴四边形DQHE是矩形.
∴DE=QH,DQ=EH.
在Rt△AQD和Rt△CHE中,
,
∴Rt△AQD≌Rt△CHE(HL).
∴AQ=CH.
∵AB=8,AD=6,
∴由勾股定理,得
AC=10.
∴
=
,
∴EH=4.8.
在Rt△CEH中,由勾股定理,得
∴CH=3.6
∴DE=10-3.6-3.6=2.8.
(3)∵
∴△AEC∽△AHE,
∴
=
,
∴AE•EC=AC•EH
理由:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,CD∥AB,AD∥BC,∠B=∠DAB=90°.
∴∠ACD=∠CAB.∠DAC=∠BCA,
∵△ACE与△ACB关于AC对称,
∴△ACE≌△ACB,
∴AE=AB=CD,CE=CB=AD,∠EAC=∠BAC,∠ACE=∠ACB,∠AEC=∠B=90°,
∴∠ACD=∠EAC.∠ACE=∠DAC,
∴∠ACE-∠ACD=∠DAC-∠EAC,
∴∠ECD=∠DAE.
在△ECD和△DAE中,
|
∴△ECD≌△DAE,
∴∠CDE=∠AED.
∵∠CDE+∠ADE=∠EAC+∠DCA,
∴2∠CDE=2∠ACD,
∴∠CDE=∠ACD,
∴DE∥AC,
∵AD=CE,
∴四边形ACED是等腰梯形.
(2)作DQ⊥AC于Q,DQ=
∴∠DQH=∠DQA=90°.
∵EH⊥AC,
∴∠EHC=∠EHA=90°.
∵DE∥AC,
∴∠EDQ=∠AQD=90°,
∴∠EDQ=∠DQH=∠EHQ=90°,

∴四边形DQHE是矩形.
∴DE=QH,DQ=EH.
在Rt△AQD和Rt△CHE中,
|
∴Rt△AQD≌Rt△CHE(HL).
∴AQ=CH.
∵AB=8,AD=6,
∴由勾股定理,得
AC=10.
∴
10EH |
2 |
6×8 |
2 |
∴EH=4.8.
在Rt△CEH中,由勾股定理,得
∴CH=3.6
∴DE=10-3.6-3.6=2.8.
(3)∵
|
∴△AEC∽△AHE,
∴
AC |
AE |
EC |
EH |
∴AE•EC=AC•EH
看了 如图,ABCD是矩形,把矩形...的网友还看了以下:
a为4×3矩阵,b为3×4矩阵,3阶矩阵c满足c∧2-5c-(ab+7)E=0,求ab.ab为行列 2020-04-12 …
设A为4×3矩阵,B为3×4矩阵,若3阶矩阵C满足C2-5C-(|AB|+7)E=0,其中E为3阶 2020-04-12 …
设A为4*3矩阵,B为3*4矩阵,若3阶矩阵C满足C^2-5C-(|AB|-7)E=0,其中E为3 2020-04-12 …
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|= 2020-04-13 …
设A为三阶矩阵,aj是A的第j列(j=1,2,3)矩阵B=(a3,3a2-a3,2a1+5a2), 2020-04-13 …
设三阶矩阵A的特征值为-2,-1,3,矩阵B=A·A-5A+3E,求B的行列式 2020-04-13 …
设三阶矩阵A的特征值为1,-2,3,矩阵B=A^2-2A,求B的特征值,B是否可对角化? 2020-04-13 …
关于矩阵的秩的问题题:设A为4×3矩阵,B为3×4矩阵,且R(A)=2,R(B)=3,求R(AB) 2020-05-13 …
设A为3*3矩阵,B为4*4矩阵,且|A|=1,|B|=2,则||B|A|= 2020-06-20 …
有关矩阵的判断对错错的麻烦举出反例1.矩阵B的第一和第3列相同,那么AB的第1和第3列相同,其中A 2020-07-25 …