早教吧作业答案频道 -->其他-->
如图①,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若BDAC=GEBF=3.(1)请写出线段PG与PC所满足的关系;并加以证明.(2)若将图①中的菱形BEFG饶点B顺
题目详情
如图①,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若
=
=
.
(1)请写出线段PG与PC所满足的关系;并加以证明.
(2)若将图①中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图②.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.
(3)若将图①中的菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请猜想(1)中的结论有没有变化?

BD |
AC |
GE |
BF |
3 |
(1)请写出线段PG与PC所满足的关系;并加以证明.
(2)若将图①中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图②.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.
(3)若将图①中的菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请猜想(1)中的结论有没有变化?

▼优质解答
答案和解析
(1)延长GP交DC于H,
∵DC∥GF,
∴∠DHP=∠PGF,∠DPH=∠GPF,
∵DP=PF,
∴△DHP≌△PGF,
∴HD=GF,
∵四边形ABCD和四边形GFEB是菱形,
∴DC=CB,FG=GB,
∴DH=GB,
∴DC-DH=CB-GB,
∴CH=CG,
∴△CHG就是等腰三角形且CP是底边上的中线,根据等腰三角形三线合一的特点,
即可得出CP⊥PG;
∴线段PG与PC的位置关系是PG⊥PC;
(2)线段PG与PC的位置关系是PG⊥PC;
证明:如图②,延长GP到H,使PH=PG,
连接CH,CG,DH,
∵P是线段DF的中点,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
∵
=
=
,
∴∠ADC=∠ABC=60°,∠GBF=60°,
∵四边形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,点A、B、F又在一条直线上,
∴∠FBC=120°,
∴∠HDC=∠CBG=60°,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
即在△HDC与△GBC中,
,
∴△HDC≌△GBC(SAS),
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC.

(3)将图①中的菱形BEFG饶点B顺时针旋转任意角度,
(1)中的结论没有变化,PG⊥PC.
∵DC∥GF,
∴∠DHP=∠PGF,∠DPH=∠GPF,
∵DP=PF,
∴△DHP≌△PGF,

∴HD=GF,
∵四边形ABCD和四边形GFEB是菱形,
∴DC=CB,FG=GB,
∴DH=GB,
∴DC-DH=CB-GB,
∴CH=CG,
∴△CHG就是等腰三角形且CP是底边上的中线,根据等腰三角形三线合一的特点,
即可得出CP⊥PG;
∴线段PG与PC的位置关系是PG⊥PC;
(2)线段PG与PC的位置关系是PG⊥PC;
证明:如图②,延长GP到H,使PH=PG,
连接CH,CG,DH,
∵P是线段DF的中点,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
∵
BD |
AC |
GE |
BF |
3 |
∴∠ADC=∠ABC=60°,∠GBF=60°,
∵四边形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,点A、B、F又在一条直线上,
∴∠FBC=120°,
∴∠HDC=∠CBG=60°,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
即在△HDC与△GBC中,
|

∴△HDC≌△GBC(SAS),
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC.

(3)将图①中的菱形BEFG饶点B顺时针旋转任意角度,
(1)中的结论没有变化,PG⊥PC.
看了 如图①,在菱形ABCD和菱形...的网友还看了以下:
图中构成东西半球分界线的两条经线是()A.A线和C线B.A线和D线C.B线和C线D.B线和D线 2020-04-23 …
15.图中构成东西半球分界线的两条经线是()A.A线和C线B.A线和D线C.B线和C线D.B线和D 2020-04-23 …
图中构成东西半球分界线的两条经线是()A、a线和c线B、a线和d线C、b线和c线D、b线和d线 2020-04-23 …
小明还想看看东半球的主要国家,他应看的范围是()A、A线和C线之间B、A线和D线之间C、B线和C线 2020-05-13 …
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
已知抛物线y=ax^2-2x+c与它的对称轴相交与点A(1,-4),与y轴交于点C,与x轴正半轴交 2020-05-16 …
几个概率论问题,一定要是对的哦,考试用的1.A,B互不相容,并且P(B)=2P(A),则肯定正确的 2020-06-30 …
图中东西半球分界线的两条经线是()A.A线和C线B.A线和D线C.B线和C线D.B线和D线 2020-12-05 …
图中构成东西半球分界线的两条经线是()A.A线和C线B.A线和D线C.B线和C线D.B线和D线 2020-12-05 …
已知抛物线Y=ax2-2x+c与它的对称轴相较于点A(1,-4),与Y轴相交于C,与Y轴正半轴交于B 2021-01-10 …