早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停

题目详情
如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.
作业搜
(1)从运动开始,当t取何值时,PQ∥CD?
(2)从运动开始,当t取何值时,△PQC为直角三角形?
▼优质解答
答案和解析
(1)当PQ∥CD时,四边形PDCB是平行四边形,
此时PD=QC,
∴12-2t=t,
∴t=4.
∴当t=4时,四边形PQDC是平行四边形.
(2)过D点,DF⊥BC于F,
∴DF=AB=8.
FC=BC-AD=18-12=6,CD=10,
①当PQ⊥BC,作业搜
则BQ+CQ=18.即:2t+t=18,
∴t=6;
②当QP⊥PC,此时P一定在DC上,
CP1=10+12-2t=22-2t,CQ2=t,
易知,△CDF∽△CQ2P1
22-2t
6
=
t
10

解得:t=
110
13

 ③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.
∴当t=6或
110
13
时,△PQC是直角三角形.