早教吧作业答案频道 -->数学-->
如图,点A、B分别在x轴、y轴上,且OA=OB,P为动点,且PA⊥PB.(1)如图①,P在第一象限时,求∠OPA的度数;(2)如图②,P在第四象限时,求∠OPA的度数;(3)在(2)的条件下,如图③,
题目详情
如图,点A、B分别在x轴、y轴上,且OA=OB,P为动点,且PA⊥PB.
(1)如图①,P在第一象限时,求∠OPA的度数;
(2)如图②,P在第四象限时,求∠OPA的度数;
(3)在(2)的条件下,如图③,过O作OE⊥BP于E,判断线段BP、AP、EO之间的数量关系,写出你的结论并证明.

(1)如图①,P在第一象限时,求∠OPA的度数;
(2)如图②,P在第四象限时,求∠OPA的度数;
(3)在(2)的条件下,如图③,过O作OE⊥BP于E,判断线段BP、AP、EO之间的数量关系,写出你的结论并证明.

▼优质解答
答案和解析
(1)如图①,
∵OA=OB,∠AOB=90°,
∴∠OBA=45°,
∵PA⊥PB,
∴∠APB=90°,
∵∠AOB+∠APB=180°,
∴O、B、P、A四点共圆,
∴∠OPA=∠OBA=45°;
(2)如图②,过点O作OD⊥AB于点D,连接PD,
∵∠BOA=90°,BP⊥AP,
∴OD=BD=AD,
∴点D为AB的中点,
∴OD=DA=DB=PD,
∴O、B、P、A四点共圆,
∵∠OBA=45°,
∴∠OPA=135°.
(3)BP=AP+2EO,
证明:如图③,在BP上取点F使EF=EP,连接OF,
∵∠OPA=135°,
∴∠OPE=45°,
∵OE⊥BP,
∴OE=EP=EF,OF=OP,
∴∠FOP=90°,
∴∠AOP+∠FOA=∠BOP+∠FOA=90°,
∴∠AOP=∠BOP,
在△AOP和△BOF中,
∵△AOP≌△BOF,
∴BF=AP,
∴2EO+AP=FP+BF=BP,
即BP=AP+2EO.
∵OA=OB,∠AOB=90°,
∴∠OBA=45°,
∵PA⊥PB,

∴∠APB=90°,
∵∠AOB+∠APB=180°,
∴O、B、P、A四点共圆,
∴∠OPA=∠OBA=45°;
(2)如图②,过点O作OD⊥AB于点D,连接PD,
∵∠BOA=90°,BP⊥AP,
∴OD=BD=AD,
∴点D为AB的中点,
∴OD=DA=DB=PD,
∴O、B、P、A四点共圆,
∵∠OBA=45°,
∴∠OPA=135°.
(3)BP=AP+2EO,
证明:如图③,在BP上取点F使EF=EP,连接OF,

∵∠OPA=135°,
∴∠OPE=45°,
∵OE⊥BP,
∴OE=EP=EF,OF=OP,
∴∠FOP=90°,
∴∠AOP+∠FOA=∠BOP+∠FOA=90°,
∴∠AOP=∠BOP,
在△AOP和△BOF中,
|
∵△AOP≌△BOF,
∴BF=AP,
∴2EO+AP=FP+BF=BP,
即BP=AP+2EO.
看了 如图,点A、B分别在x轴、y...的网友还看了以下:
A,B两数的和是180,数A是数B的2/3,那么A,B两数的比是(),数A与两数和的比是().求数 2020-05-15 …
如果a+1=b(a,b都是自然数,a不等于0),则a和b的最大公约数是( ),最小公倍数是(如果a 2020-05-16 …
对于三个数a、b、c,用min{a,b,c}表示这三个数里最小的数,例如,min{-1,2,3}= 2020-05-16 …
已知有理数A大于有理数B,则下列说法正确的是( ).A.A的绝对值大于B的绝对值.B.A的绝对值小 2020-05-16 …
十分之九/a(a为非零数),a为何值时,商大于被除数?a为何值时上等于被除数?a为何值时十分之九/ 2020-06-14 …
若a为有理数,则下列说法正确的是A.-a一定是负数B.a的绝对值一定是正数C.-a的绝若a为有理数 2020-06-25 …
高中数学必修一函数模型(指数函数、对数函数、幂函数)问题探究指数函数y=a^x(a大于0小于1)、 2020-07-30 …
a,b,c,d都是不同的质数.甲数=a*b*c,乙数=a*b*c*d,则().a.甲是乙的倍数b. 2020-07-31 …
自然数A是B的11倍,A和B的最大公因数是;A和B的最小公倍数是;自然数A是B的18,A和B的最大公 2020-11-18 …
若a为有理数,则必有()A.-a是负有理数B.|a|是整数C.|a|是非负数D.-|a|是负数3.如 2021-02-05 …