早教吧作业答案频道 -->其他-->
如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经
题目详情

(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为______cm/s时,在某一时刻也能够使△BPD与△CPQ全等.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?
▼优质解答
答案和解析
(1)①全等,
理由如下:
∵t=1秒,
∴BP=CQ=1×1=1厘米,
∵AB=6cm,点D为AB的中点,
∴BD=3cm.
又∵PC=BC-BP,BC=4cm,
∴PC=4-1=3cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
∴△BPD≌△CPQ;
②假设△BPD≌△CPQ,
∵vP≠vQ,∴BP≠CQ,
又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,
∴点P,点Q运动的时间t=
=2秒,
∴vQ=
=
=1.5cm/s;
(2)设经过x秒后点P与点Q第一次相遇,
由题意,得 1.5x=x+2×6,
解得x=24,
∴点P共运动了24×1cm/s=24cm.
∵24=16+4+4,
∴点P、点Q在AC边上相遇,
∴经过24秒点P与点Q第一次在边AC上相遇.
理由如下:
∵t=1秒,
∴BP=CQ=1×1=1厘米,
∵AB=6cm,点D为AB的中点,
∴BD=3cm.
又∵PC=BC-BP,BC=4cm,
∴PC=4-1=3cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
∴△BPD≌△CPQ;
②假设△BPD≌△CPQ,
∵vP≠vQ,∴BP≠CQ,
又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,
∴点P,点Q运动的时间t=
BP |
t |
∴vQ=
CQ |
t |
3 |
2 |
(2)设经过x秒后点P与点Q第一次相遇,
由题意,得 1.5x=x+2×6,
解得x=24,
∴点P共运动了24×1cm/s=24cm.
∵24=16+4+4,
∴点P、点Q在AC边上相遇,
∴经过24秒点P与点Q第一次在边AC上相遇.
看了 如图,已知△ABC中,AB=...的网友还看了以下:
如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC 2020-05-13 …
如图22,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,点P在线段BC上以 2020-05-13 …
如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段B 2020-06-19 …
如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个 2020-07-17 …
如图,已知正方形ABCD的边长为10cm,点E在边AB上,且AE=4cm,(1)如果点P在线段BC 2020-07-29 …
初一数学题关于平面直角坐标在方格纸上有A,B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为 2020-08-01 …
已知点A是圆F1:(x+3)2+y2=16上任意一点,点F2与点F1关于原点对称.线段AF2的中垂 2020-08-01 …
如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个 2020-08-03 …
如图(1),等边三角形ABC的边长为8,点P由点B开始沿BC以每秒1个单位长的速度作匀速运动,到点C 2020-11-01 …
已知数轴上两点A、B对应的数分别是6,-8,M、N、P为数轴上三个动点,点M从点A出发速度为每秒2个 2020-11-20 …