早教吧作业答案频道 -->其他-->
(2010•盘锦)如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出
题目详情
(2010•盘锦)如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.
(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

▼优质解答
答案和解析

(1)证明:∵△ABC是等边三角形,D是BC的中点,
∴AD⊥BC,且∠BAD=
∠BAC=30°,
∵△AED是等边三角形,
∴AD=AE,∠ADE=60°,
∴∠EDB=90°-∠ADE=90°-60°=30°,
∵ED∥CF,
∴∠FCB=∠EDB=30°,
∵∠ACB=60°,
∴∠ACF=∠ACB-∠FCB=30°,
∴∠ACF=∠BAD=30°,
在△ABD和△CAF中,
,
∴△ABD≌△CAF(ASA),
∴AD=CF,
∵AD=ED,
∴ED=CF,
又∵ED∥CF,
∴四边形EDCF是平行四边形,
∴EF=CD.
(2)△AEF和△ABC的面积比为:1:4;
(3)成立.
理由如下:∵ED∥FC,
∴∠EDB=∠FCB,
∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB
∴∠AFC=∠BDA,
在△ABD和△CAF中,
∴△ABD≌△CAF(AAS),
∴AD=FC,
∵AD=ED,
∴ED=CF,
又∵ED∥CF,
∴四边形EDCF是平行四边形,
∴EF=DC.

(1)证明:∵△ABC是等边三角形,D是BC的中点,
∴AD⊥BC,且∠BAD=
1 |
2 |
∵△AED是等边三角形,
∴AD=AE,∠ADE=60°,
∴∠EDB=90°-∠ADE=90°-60°=30°,
∵ED∥CF,
∴∠FCB=∠EDB=30°,
∵∠ACB=60°,
∴∠ACF=∠ACB-∠FCB=30°,
∴∠ACF=∠BAD=30°,
在△ABD和△CAF中,
|
∴△ABD≌△CAF(ASA),
∴AD=CF,
∵AD=ED,
∴ED=CF,
又∵ED∥CF,
∴四边形EDCF是平行四边形,
∴EF=CD.
(2)△AEF和△ABC的面积比为:1:4;
(3)成立.

理由如下:∵ED∥FC,
∴∠EDB=∠FCB,
∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB
∴∠AFC=∠BDA,
在△ABD和△CAF中,
|
∴△ABD≌△CAF(AAS),
∴AD=FC,
∵AD=ED,
∴ED=CF,
又∵ED∥CF,
∴四边形EDCF是平行四边形,
∴EF=DC.
看了 (2010•盘锦)如图,△A...的网友还看了以下:
中国少数民族的三大名锦是( ) A.壮锦 B.西兰卡普 C.蜀锦 D.瑶锦 2020-05-20 …
下列属于丝织品的是( )。 A.织锦B.壮锦 C.缂丝D.刺绣 E.苏绣 2020-05-20 …
下列被称为当代三大名锦,而产自苏州的是( )。A.云锦B.蜀锦C.湘锦 D.宋锦 2020-05-20 …
软件度量的基本维度有哪些().A.软件大小B.软件缺陷C.软件时间D.软件工作量E.软件质量 2020-05-23 …
够买5种教具A,B,C,D,E的件数和总钱数列下表:第一次购买件数:A:1B:3C:4D:5E:6 2020-06-09 …
线性代数问题A是n阶矩阵,A2-2A+E=0得到A=E对不?还是A=E是前式的充分非必要条件?帮忙 2020-06-12 …
设n阶矩阵A=E-a*a^T,其中a是n维非零列向量,证明1.A^2=A的充要条件是a^T*a设n 2020-06-23 …
liman=a的充要条件是对于任意的e>0,只有有限项的an不在(a-e,a+e)中.求具体证明过 2020-06-23 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
如图,购买五种教学用品A、B、C、D、E,件数和用钱数列表如下:品[[年件名件品数名ABCDE总钱数 2020-11-19 …