早教吧作业答案频道 -->数学-->
已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和
题目详情
已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.
(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;
①求证:点F是AD的中点;
②判断BE与CF的数量关系和位置关系,并说明理由;
(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.

(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;
①求证:点F是AD的中点;
②判断BE与CF的数量关系和位置关系,并说明理由;
(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.

▼优质解答
答案和解析
(1)①证明:如图1,
∵AF=CF,
∴∠1=∠2,
∵∠1+∠ADC=90°,∠2+∠3=90°,
∴∠3=∠ADC,
∴FD=FC,
∴AF=FD,
即点F是AD的中点;
②BE=2CF,BE⊥CF.理由如下:
∵△ABC和△DEC都是等腰直角三角形,
∴CA=CB,CD=CE,
在△ADC和△BEC中
,
∴△ADC≌△BEC,
∴AD=BE,∠1=∠CBE,
而AD=2CF,∠1=∠2,
∴BE=2CF,
而∠2+∠3=90°,
∴∠CBE+∠3=90°,
∴CF⊥BE;
(2)仍然有BE=2CF,BE⊥CF.理由如下:
延长CF到G使FG=CF,连结AG、DG,如图2,
∵AF=DF,FG=FC,
∴四边形ACDG为平行四边形,
∴AG=CD,AG∥CD,
∴∠GAC+∠ACD=180°,即∠GAC=180°-∠ACD,
∴CD=CE=AG,
∵△DEC绕点C顺时针旋转α角(0<α<90°),
∴∠BCD=α,
∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,
∴∠GAC=∠ECB,
在△AGC和△CEB中
,
∴△AGC≌△CEB,
∴CG=BE,∠2=∠1,
∴BE=2CF,
而∠2+∠BCF=90°,
∴∠BCF+∠1=90°,
∴CF⊥BE.

∵AF=CF,
∴∠1=∠2,
∵∠1+∠ADC=90°,∠2+∠3=90°,
∴∠3=∠ADC,
∴FD=FC,
∴AF=FD,
即点F是AD的中点;
②BE=2CF,BE⊥CF.理由如下:
∵△ABC和△DEC都是等腰直角三角形,
∴CA=CB,CD=CE,
在△ADC和△BEC中
|
∴△ADC≌△BEC,
∴AD=BE,∠1=∠CBE,
而AD=2CF,∠1=∠2,
∴BE=2CF,
而∠2+∠3=90°,
∴∠CBE+∠3=90°,
∴CF⊥BE;
(2)仍然有BE=2CF,BE⊥CF.理由如下:
延长CF到G使FG=CF,连结AG、DG,如图2,
∵AF=DF,FG=FC,
∴四边形ACDG为平行四边形,
∴AG=CD,AG∥CD,
∴∠GAC+∠ACD=180°,即∠GAC=180°-∠ACD,

∴CD=CE=AG,
∵△DEC绕点C顺时针旋转α角(0<α<90°),
∴∠BCD=α,
∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,
∴∠GAC=∠ECB,
在△AGC和△CEB中
|
∴△AGC≌△CEB,
∴CG=BE,∠2=∠1,
∴BE=2CF,
而∠2+∠BCF=90°,
∴∠BCF+∠1=90°,
∴CF⊥BE.
看了 已知△ABC和△DEC都是等...的网友还看了以下:
已知三角形ABC与三角形A'B'C'中,AB=A'B',BC=B'C',角BAC=角B'C'A'= 2020-05-16 …
小学四年级我们已经知道三角形三个内角和是180°,对于如图1中,AC,BD交于O点,形成的两个三角 2020-06-10 …
若a+b+c/d=a+b+d/c=a+c+d/b=a+c+d/a=k1)k=?2)a+b+c+d/ 2020-06-12 …
三角形加三角形=a,三角形减三角形=b,三角形除以三角形=d,三角形乘三角形=c,a+b+c+d= 2020-07-19 …
如图所示,下列说法错误的是()A.∠C与∠1是内错角B.∠2与∠3是内错角C.∠A与∠B是同旁内角 2020-07-23 …
如图所示,下列说法错误的是()A.∠A和∠B是同旁内角B.∠A和∠3是内错角C.∠1和∠3是内错角 2020-07-23 …
在△ABC和△A'B'C'中,已知∠C=∠C'=90°,点D,D'分别在边AB,A'B'上,且CD 2020-07-30 …
如图,正四面体ABCD的顶点A、B、C分别在两两垂直的三条射线Ox、Oy、Oz上,给出下列四个命题 2020-08-02 …
下列正确的是())A终边在Y轴非负半轴上的角是直角.B第二象限角一定是钝角C第四象限角一定是负角D 2020-08-03 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …