已知函数f(x)=ax+1−xax(a>0).(1)用单调性的定义判断函数f(x)在(0,+∞)上的单调性并加以证明;(2)设f(x)在0<x≤1的最小值为g(a),求y=g(a)的解析式.
已知函数f(x)=ax+(a>0).
(1)用单调性的定义判断函数f(x)在(0,+∞)上的单调性并加以证明;
(2)设f(x)在0<x≤1的最小值为g(a),求y=g(a)的解析式.
答案和解析
(1)f(x)=ax+
-
f(x)在(0,)上是单调递减的,在(,+∞)上单调递增的;
理由如下:设x1,x2是(0,)上的任意两个值,且x1<x2,则△x=x2-x1>0,
△y=f(x2)-f(x1)=ax2+-ax1-=a(x2-x1)+-
=a(x2-x1)+=(x2-x1)(a-)
=(x2-x1)•
∵0<x1<,0<x2<∴0<x1x2<∴0<ax1x2<1,
ax1x2-1<0 又△x=x2-x1>0,ax1x2>0,
∴△y=f(x2)-f(x1)<0
∴f(x)在(0,)上是单调递减,同理可证f(x)在(,+∞)上单调递增;
(2)当0<≤1即a≥1时,f(x)在(0,1]上单调递减,
∴fmin(x)=f(1)=a;
当>1即0<a<1时,f(x)在(0,]单调递减,在[,1]单调递增,
∴fmin(x)=f()=2-
∴g(a)=.
已知函数f(x)=2∧x-a╱2∧x+1(a>-1)1.当a=2时,证明f(x)不是奇函数2.判断函 2020-03-31 …
下列判断正确的是:A函数f(x)=x^2-2x/x-2是奇函数A函数f(x)=x^2-2x/x-2 2020-04-06 …
初三二次函数判断题观察y=x方的图象,则下列判断中正确的是A.若a、b互为相反数,则x=a和x=b 2020-05-13 …
若y=f(x),与y=g(x),在公共区间A内都是增函数,判断y=g(x)+f(x)在A内是增或减 2020-05-14 …
已知函数f(x)=x|2a-x|+2x,a∈R.(1)若a=0,判断函数y=f(x)的奇偶性,并加 2020-06-08 …
已知函数f(x)=(2的x次方-a)/(2的x次方+1)①当a=2时,证明f(x)不是奇函数②判断 2020-06-09 …
⒈已知分段函数f(x)=(a-1)x+5x≥0;﹣x²+ax+ax<0在(-∞,﹢∞)上为增函数, 2020-08-01 …
已知函数g(x)=−(12)x2的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).(1) 2020-12-08 …
高中函数已知定义在[-1,1]上的函数f(x),对任意x∈[-1,1]有f(-x)=-f(x),且f 2020-12-08 …
已知函数f(x)=(a×2的x次方-2+a)/(2的x次方+1)a∈R①试判断f(x)的已知函数f( 2021-01-23 …