已知函数f(x)=ax+1−xax(a>0).(1)用单调性的定义判断函数f(x)在(0,+∞)上的单调性并加以证明;(2)设f(x)在0<x≤1的最小值为g(a),求y=g(a)的解析式.
已知函数f(x)=ax+(a>0).
(1)用单调性的定义判断函数f(x)在(0,+∞)上的单调性并加以证明;
(2)设f(x)在0<x≤1的最小值为g(a),求y=g(a)的解析式.
答案和解析
(1)f(x)=ax+
-
f(x)在(0,)上是单调递减的,在(,+∞)上单调递增的;
理由如下:设x1,x2是(0,)上的任意两个值,且x1<x2,则△x=x2-x1>0,
△y=f(x2)-f(x1)=ax2+-ax1-=a(x2-x1)+-
=a(x2-x1)+=(x2-x1)(a-)
=(x2-x1)•
∵0<x1<,0<x2<∴0<x1x2<∴0<ax1x2<1,
ax1x2-1<0 又△x=x2-x1>0,ax1x2>0,
∴△y=f(x2)-f(x1)<0
∴f(x)在(0,)上是单调递减,同理可证f(x)在(,+∞)上单调递增;
(2)当0<≤1即a≥1时,f(x)在(0,1]上单调递减,
∴fmin(x)=f(1)=a;
当>1即0<a<1时,f(x)在(0,]单调递减,在[,1]单调递增,
∴fmin(x)=f()=2-
∴g(a)=.
这个函数定义域到底是什么f(x) = alnx + x我觉得:当a=0时,f(x)=x,所以此时定 2020-05-16 …
大一高数--导数在下列各题中均假定f'(x)存在,按照导数的定义观察下列极限,分析并指出A的具体含 2020-05-17 …
函数y=√x(x-1)+√x的定义域为()答案上的解析是:要使函数有意义,必须{x(x-1)≥0, 2020-06-25 …
中值定理的问题函数f(x)=x-(3/2)x^(1/3)在下列区间上不满足拉格朗日中值定理的条件是 2020-07-09 …
一个关于命题和他的否定的问题,“x、y不全为0”.x、y不全为0是什么意识,是x=0或y=0,还是 2020-07-14 …
求2xsin(1/x)-cos(1/x)在x→0+时的极限.这个问题是这么来的,考虑f(x)=(x 2020-07-21 …
fx与f(g(x))的定义域问题f(x+2)的定义域(1,4),是指x取值在(1,4)还是x+2取 2020-07-25 …
有关定积分!1、(sinx)^2从0到π的定积分2、根号下[1-sin(2x)]从0到π/2的定积分 2020-11-01 …
已知函数f(x)的定义域为[0,1],则f(x-2)的定义域为∵函数f(x)的定义域为[0,1],∴ 2020-11-18 …
设函数f(x,y)在区域D:0≤x≤1,0≤y≤1上有定义,f(0,0)=0,且在(0,0)处f(x 2021-02-05 …