早教吧作业答案频道 -->数学-->
已知三角形AOB中,OB=3,OA=4,AB=5,点P是三角形AOB内切圆上一点,求以PA,PB,PO为直径的三个圆的面积之和的最大值与最小值?
题目详情
已知三角形AOB中,OB=3,OA=4,AB=5,点P是三角形AOB内切圆上一点,求以PA,PB,PO为直径的三个圆的面积之和的最大值与最小值?
▼优质解答
答案和解析
以O为原点,OA,OB为x,y轴建立直角坐标系,且A(4,0),B(0,3)
那么三角形OAB的内切圆方程为(x-1)^2+(y-1)^2=1
以PA,PB,PC为直径的圆面积:S=π[|PA|^2+|PB|^2+|PO|^2]/4
所以只需求|PA|^2+|PB|^2+|PO|^2的最大最小值.
设P点坐标 (x,y),
【 则x,y满足:(x-1)^2+(y-1)^2=1,因为P点在圆上,有y^2-2y=-x^2+2x-1】
则 |PA|^2+|PB|^2+|PO|^2
=[(x-4)^2+y^2]+[x^2+(y-3)^2]+[x^2+y^2]
=3x^2+3y^2-8x-6y+25
=3x^2-8x+25+3(-x^2+2x-1)
=-2x+22
由于:(x-1)^2+(y-1)^2=1 所以:(x-1)^2≤1,即 0≤x≤2
所以:18≤-2x+22≤22
所以:18≤|PA|^2+|PB|^2+|PO|^2≤22
则面积的最大值:11π/2
面积的最小值:9π/2
具体过程我没有检查,应该没有错吧,你自己看看哈.
那么三角形OAB的内切圆方程为(x-1)^2+(y-1)^2=1
以PA,PB,PC为直径的圆面积:S=π[|PA|^2+|PB|^2+|PO|^2]/4
所以只需求|PA|^2+|PB|^2+|PO|^2的最大最小值.
设P点坐标 (x,y),
【 则x,y满足:(x-1)^2+(y-1)^2=1,因为P点在圆上,有y^2-2y=-x^2+2x-1】
则 |PA|^2+|PB|^2+|PO|^2
=[(x-4)^2+y^2]+[x^2+(y-3)^2]+[x^2+y^2]
=3x^2+3y^2-8x-6y+25
=3x^2-8x+25+3(-x^2+2x-1)
=-2x+22
由于:(x-1)^2+(y-1)^2=1 所以:(x-1)^2≤1,即 0≤x≤2
所以:18≤-2x+22≤22
所以:18≤|PA|^2+|PB|^2+|PO|^2≤22
则面积的最大值:11π/2
面积的最小值:9π/2
具体过程我没有检查,应该没有错吧,你自己看看哈.
看了 已知三角形AOB中,OB=3...的网友还看了以下:
一个两位数个位上的数字是十位上数字的4倍,小马虎抄写时,把十位上的数字与个位上的数字写反了,使得原 2020-05-19 …
上、下两层书架放图书本数的比是4:3.如果从上层取出40本放到下层,图书本数的比是4:5.两层共放 2020-05-20 …
1头象的质量等于4头牛的质量,1头牛的质量又等于3匹小马的质量,而1匹小马的质量刚好与4头小猪的质 2020-06-11 …
数学期中练习题:行程问题在400米的环形跑道上小张、小李和小王三位运动员练习长跑,小张的跑步速度与 2020-06-27 …
有11个相同的小球,还有一个小球与以上小球大小相同,但重量不同(可能轻,也可能重),现有天平一个, 2020-07-03 …
现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57 2020-07-18 …
合肥路通旅游公司有两种客车,1辆中巴车与4辆小客车一次可以搭载46名乘客,2辆中巴车与3辆小客车一 2020-07-18 …
现在正值人生花样年华的你,与刚上小学相比,身体都发生了哪些变化? 2020-12-08 …
1头大象的重量=4头牛的重量,一头牛的重量=3匹小马的重量,而1匹小马的重量刚好与4头小猪的重量相同 2020-12-09 …
在某一运动场的450米环形跑道上,小王从A点,小李从B点同时出发反向而行,6分钟后小王与小李相遇,再 2020-12-12 …