早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在等腰△ABC中,CA=CB,AD是腰BC边上的高,△ACD的内切圆⊙E分别与边AD、BC相切于点F、G,连AE、BE.(1)求证:AF=BG;(2)过E点作EH⊥AB于H,试探索线段EH与线段AB的数量关系,并说明理

题目详情
如图,在等腰△ABC中,CA=CB,AD是腰BC边上的高,△ACD的内切圆⊙E分别与边AD、BC相切于点F、G,连AE、BE.
(1)求证:AF=BG;
(2)过E点作EH⊥AB于H,试探索线段EH与线段AB的数量关系,并说明理由.
▼优质解答
答案和解析
(1)设△ACD的内切圆⊙E与边AC相切于点I,
△ACD的内切圆⊙E与边BC相切于点G,所以CI=CG.
同理:AI=AF.
∵CA=CB,CI=CG,∴AI=BG.
又∵AI=AF,∴AF=BG.

(2)EH=
1
2
AB,
理由:连接AE、BE、CE,
∵E是△ACD的内切圆的圆心,
∴CE平分∠ACB.
即∠ACE=∠BCE,
在△ACE和△BCE中,
CA=BC
∠ACE=∠BCE
CE=CE

∴△ACE≌△BCE(SAS).
∴∠AEC=∠BEC,AE=BE,
∵E是△ACD的内切圆的圆心,∠ADC=90°,
∵∠AEC=90°+
1
2
∠ADC=135°,
从而∠AEB=90°,又AE=BE,
∴△ABE为等腰直角三角形,
∵EH⊥AB于H,
∴EH=
1
2
AB.