早教吧作业答案频道 -->数学-->
如图,在△ABC中,AC=BC,F为边AB上的一点,BF:AF=m:n(m、n>0),取CF的中点D,连结AD并延长交BC于点E.(1)求BE:EC的值;(2)若BE=2EC,那么CF所在的直线与边AB有怎样的位置关系?证明你
题目详情
如图,在△ABC中,AC=BC,F为边AB上的一点,BF:AF=m:n(m、n>0),取CF的中点D,连结AD并延长交BC于点E.

(1)求BE:EC的值;
(2)若BE=2EC,那么CF所在的直线与边AB有怎样的位置关系?证明你的结论.
(3)E点能否成为BC中点?若能,求出相应的m:n,若不能,证明你的结论.

(1)求BE:EC的值;
(2)若BE=2EC,那么CF所在的直线与边AB有怎样的位置关系?证明你的结论.
(3)E点能否成为BC中点?若能,求出相应的m:n,若不能,证明你的结论.
▼优质解答
答案和解析
(1)如图,过点F作FG∥BC交AE于G,
则∠DFG=∠DCE,∠DGF=∠DEC,
∵D是CF的中点,
∴CD=DF,
在△DCE和△DFG中,
,
∴△DCE≌△DFG(ASA),
∴EC=GF,
∵BF:AF=m:n,
∴
=
,
∵FG∥BC,
∴△AFG∽△ABE,
∴
=
=
,
∴BE:EC=
;
(2)若BE=2EC,则BE:EC=2,
由(1)知,
=2,
解得m=n,
∴点F是AB的中点,
∵AC=BC,
∴CF⊥AB;
(3)不能.
理由如下:假设点E能成为BC中点,
则BE=EC,
∴BE:EC=1,
由(1)知
=1,
解得m=0,
这与m、n>0相矛盾,
所以,点E不能成为BC中点.
(1)如图,过点F作FG∥BC交AE于G,则∠DFG=∠DCE,∠DGF=∠DEC,
∵D是CF的中点,
∴CD=DF,
在△DCE和△DFG中,
|
∴△DCE≌△DFG(ASA),
∴EC=GF,
∵BF:AF=m:n,
∴
| AF |
| AB |
| n |
| m+n |
∵FG∥BC,
∴△AFG∽△ABE,
∴
| AF |
| AB |
| FG |
| BE |
| n |
| m+n |
∴BE:EC=
| m+n |
| n |
(2)若BE=2EC,则BE:EC=2,
由(1)知,
| m+n |
| n |
解得m=n,
∴点F是AB的中点,
∵AC=BC,
∴CF⊥AB;
(3)不能.
理由如下:假设点E能成为BC中点,
则BE=EC,
∴BE:EC=1,
由(1)知
| m+n |
| n |
解得m=0,
这与m、n>0相矛盾,
所以,点E不能成为BC中点.
看了 如图,在△ABC中,AC=B...的网友还看了以下:
下列词语中加点字的读音都正确的一项是()A.孱头(càn)冗长(róng)角斗士(jué)咬文嚼字 2020-06-10 …
已知:0°C时等于32°F,100°C时等于212°F.求20°C时等于多少°F,90°F等于多少 2020-06-12 …
若准线方程是f(x,y)=0,z=0,当母线的方向向量是S={L,m,n}时,柱面方程为f(x-L 2020-07-09 …
写单词,这些单词打乱顺序了!:1.d,f,e,n,i,f,e,r,t,()2.g,h,o,e,t, 2020-07-26 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
f(x)=x^n,求f'(x)lim(dx->0)[C(n,1)*x^(n-1)*dx+C(n,2) 2020-11-20 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
求函数f(x)lim(n趋向于无穷)x^(n+2)-x^(-n)/x^n+x^(-n-1)的连续区间 2020-12-15 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …