早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求曲面S:x22+y2+z24=1的切平面,使之与平面π:2x+2y+z+5=0平行.

题目详情
求曲面 S:
x2
2
+y2+
z2
4
=1的切平面,使之与平面π:2x+2y+z+5=0平行.
▼优质解答
答案和解析
设F(x,y,z)=
x2
2
+y2+
z2
4
-1,则曲面S在任意点(x,y,z)处的法向量
n
∥(Fx,Fy,Fz),即
n
∥(x,2y,2z)
∴要使得曲面S任意点(x,y,z)处的切平面与平面π平行,则有
(2,2,1)∥(x,2y,2z)
即令
x
2
=
2y
2
=
2z
1
=t
x2
2
+y2+
z2
4
=1
∴解得t=±
7
4

①当t=
7
4
时,切点(x,y,z)=(
7
2
7
4
7
8
),
切平面为:2(x-
7
2
)+2(y-
7
4
)+(z-
7
8
)=0,即2x+2y+z-
91
8
=0;
②当t=-
7
4
时,切点(x,y,z)=-(
7
2
7
4
7
8
),
切平面为:2(x+
7
2
)+2(y+
7
4
)+(z+
7
8
)=0,即2x+2y+z+
91
8
=0
∴所求切平面为:2x+2y+z±
91
8
=0