早教吧作业答案频道 -->其他-->
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,点D在直线上,D的横纵坐标之积为2,过D作两坐标轴的垂线DC、DE,连接OD.(1)求证:AD平分∠CDE;(2)对任意的实数b(b≠0),求证:AD•BD为
题目详情

(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证:AD•BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
▼优质解答
答案和解析
(1)证明:由y=x+b得A(-b,0),B(0,b).
∴∠DAC=∠OAB=45°
又∵DC⊥x轴,DE⊥y轴
∴∠ACD=∠CDE=90°
∴∠ADC=45°
即AD平分∠CDE.
(2)证明:∵∠ACD=90°,∠ADC=45°,
∴△ACD是等腰直角三角形,
同理可得,△BDE是等腰直角三角形,
∴AD=
CD,BD=
DE.
∴AD•BD=2CD•DE=2×2=4为定值.
(3)存在直线AB,使得OBCD为平行四边形.
若OBCD为平行四边形,则AO=AC,OB=CD.
由(1)知AO=BO,AC=CD,
设OB=a(a>0),
∴B(0,-a),D(2a,a),
∵D的横纵坐标之积为2,
∴点D在双曲线y=
上,
∴2a•a=2,
∴a1=-1(舍去),a2=1,
∴B(0,-1).
又∵B在y=x+b上,
∴b=-1.
即存在直线:y=x-1,使得四边形OBCD为平行四边形.

∴∠DAC=∠OAB=45°
又∵DC⊥x轴,DE⊥y轴
∴∠ACD=∠CDE=90°
∴∠ADC=45°
即AD平分∠CDE.
(2)证明:∵∠ACD=90°,∠ADC=45°,
∴△ACD是等腰直角三角形,
同理可得,△BDE是等腰直角三角形,
∴AD=
2 |
2 |
∴AD•BD=2CD•DE=2×2=4为定值.
(3)存在直线AB,使得OBCD为平行四边形.
若OBCD为平行四边形,则AO=AC,OB=CD.
由(1)知AO=BO,AC=CD,
设OB=a(a>0),
∴B(0,-a),D(2a,a),
∵D的横纵坐标之积为2,
∴点D在双曲线y=
2 |
x |
∴2a•a=2,
∴a1=-1(舍去),a2=1,
∴B(0,-1).
又∵B在y=x+b上,
∴b=-1.
即存在直线:y=x-1,使得四边形OBCD为平行四边形.
看了 如图,直线y=x+b(b≠0...的网友还看了以下:
有关方向的判断,正确的是()A、A点位于B点的西北方向B、C点位于E点的正东方向C、C点位于D点的 2020-05-13 …
图中A点位于B点的()A.东南方向B.西南方向C.东北方向D.西北方向图中A点位于B点的()A.东 2020-05-13 …
读图、回答问题小题1:C点位于B点的()A.东北方向B.东南方向C.西北方向D.西南方向小题2:关 2020-05-13 …
AB是圆O的直径,BM垂直于AB于B点,点C是射线BM上异于端点的一动点,AC交圆O于D点,过D点 2020-05-16 …
在平面直角坐标系xoy中,直线y=-x+m经过点A(2,0),交y轴于B.点D为x轴上一点且S△A 2020-06-14 …
如图所示,实线表示一簇关于x轴对称的等势面,在轴上有A、B两点,则()A.A点场强等于B点场强B. 2020-07-01 …
如图所示,实线表示一簇关于x轴对称的等势面,在轴上有A、B两点,则()A.A点场强方向指向x轴负方 2020-07-01 …
如图,在直角坐标系xOy中,一直线y=2x+b经过点A(-1,0)与y轴正半轴交于B点,在x轴正半 2020-07-16 …
植物光合作用受光强度、CO2浓度等环境因素的影响如图所示,下列叙述错误的是()A.a点为光饱和点B. 2020-12-20 …
某电场的电场线分布如图所示,下列说法正确的是()A.c点的电场强度大于b点的电场强度B.若将一试探电 2020-12-30 …