早教吧 育儿知识 作业答案 考试题库 百科 知识分享

用反证法证明√2+√3是无理数

题目详情
用反证法证明√2+√3是无理数
▼优质解答
答案和解析
假设√6是有理数,则存在整数p,q使得 p/q=√6,且p,q互质
所以p^2=6q^2
因为等式右侧能被2整除,所以p一定是偶数,设p=2p',所以
2p'^2=3q^2
所以q也能被2整除,这于p,q互质矛盾,所以√6不是有理数
而(√2+√3)^2=5+2√6,假设√2+√3是有理数,则其平方是有理数,且[(√2+√3)^2-5]/2也必然是有理数,而这与√6不是有理数矛盾