早教吧作业答案频道 -->数学-->
证明:无界且非无穷大量的数列{xn}必存在收列子列.
题目详情
证明:无界且非无穷大量的数列{xn} 必存在收列子列.
▼优质解答
答案和解析
先解决概念问题:数列无界的定义:∀G>0,∃N>0,使得|xN|>G,则称数列{xn}是无界的~.
显然无穷大量一定是无界的,但无界不一定是无穷大量,
举个简单的栗子就明白了:{xn}:1,0,2,0,3,0,……:无界,但非无穷大.
那么就容易证明啦~:
由于{xn}是非无穷大量,所以∃M>0,使得数列中有无穷多项满足|xn|≤M(或表述为:∃M>0,对∀Nk>0,∃nk>Nk,使得|xnk|≤M)
取数列:
取N1=1,∃n1>1,|xn1|≤M;
取N2=n1,∃n2>n1,|xn2|≤M;
……继续下去,得到有界子列{xnk},|xnk|≤M,k=1,2,3……
由Bolzano-Weierstrass定理,{xnk}必有收敛子列,而子列的子列仍旧是子列,所以{xn}存在收敛子列.
显然无穷大量一定是无界的,但无界不一定是无穷大量,
举个简单的栗子就明白了:{xn}:1,0,2,0,3,0,……:无界,但非无穷大.
那么就容易证明啦~:
由于{xn}是非无穷大量,所以∃M>0,使得数列中有无穷多项满足|xn|≤M(或表述为:∃M>0,对∀Nk>0,∃nk>Nk,使得|xnk|≤M)
取数列:
取N1=1,∃n1>1,|xn1|≤M;
取N2=n1,∃n2>n1,|xn2|≤M;
……继续下去,得到有界子列{xnk},|xnk|≤M,k=1,2,3……
由Bolzano-Weierstrass定理,{xnk}必有收敛子列,而子列的子列仍旧是子列,所以{xn}存在收敛子列.
看了 证明:无界且非无穷大量的数列...的网友还看了以下:
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}的前n项和为Sn=n*(a1+a2)/2,数列{bn}满足b1+3b2+3^2b3 2020-07-03 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
设数列{an}的前n项和为Sn,已知A1=1,sn=na1-n(n-1),求证数列an为等差数列设 2020-07-18 …
已知Sn是等差数列{an}的前n项和,bn=Sn/n,①证:数列{bn}是等差数列②若S7=已知S 2020-07-23 …
用数学归纳法证明:证明:对大于2的一切正整数n证明:对大于2的一切正整数n,下列不等式成立(1+2 2020-08-01 …
在数列{an}中,a1=1,a(n+1)=1-1/4an,bn=2/(2an-1),其中n∈N*(1 2020-12-09 …