早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,平面直角坐标系中,直角梯形OABC的点O在坐标原点B(15,8),C(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运

题目详情
如图,平面直角坐标系中,直角梯形OABC的点O在坐标原点B(15,8),C(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.
(1)在t=3时,M点坐标______,N点坐标______;
(2)当t为何值时,四边形OAMN是矩形?
(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说出理由.
▼优质解答
答案和解析
(1)∵B(15,8),C(21,0),
∴AB=15,OA=8,
OC=21,
当t=3时,AM=1×3=3,
CN=2×3=6,
∴ON=OC-CN=21-6=15,
∴点M(3,8),N(15,0);
故答案为:(3,8);(15,0);

(2)当四边形OAMN是矩形时,AM=ON,
∴t=21-2t,
解得t=7秒,
故t=7秒时,四边形OAMN是矩形;

(3)存在t=5秒时,四边形MNCB能否为菱形.
理由如下:四边形MNCB是平行四边形时,BM=CN,
∴15-t=2t,
解得t=5秒,
此时CN=5×2=10,
过点B作BD⊥OC于D,则四边形OABD是矩形,
∴OD=AB=15,BD=OA=8,
CD=OC-OD=21-15=6,
在Rt△BCD中,BC=
BD2+CD2
=
82+62
=10,
∴BC=CN,
∴平行四边形MNCB是菱形,
故,存在t=5秒时,四边形MNCB能否为菱形.